File size: 3,203 Bytes
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import kornia as K
import kornia.feature as KF
import torch
import matplotlib
matplotlib.use('Agg')
import numpy as np
from plot_utils import plot_images, plot_lines, plot_color_line_matches

sold2 = KF.SOLD2(pretrained=True, config=None)
ransac = K.geometry.RANSAC(model_type="homography", inl_th=3.0)


def infer(img1, img2, line_style: str):
    torch_img1 = K.image_to_tensor(img1).float() / 255.0
    torch_img2 = K.image_to_tensor(img2).float() / 255.0

    torch_img1_gray = K.color.rgb_to_grayscale(torch_img1)
    torch_img2_gray = K.color.rgb_to_grayscale(torch_img2)
    
    imgs = torch.stack([torch_img1_gray, torch_img2_gray],)
    
    with torch.inference_mode():
        outputs = sold2(imgs)
        
    line_seg1 = outputs["line_segments"][0]
    line_seg2 = outputs["line_segments"][1]
    desc1 = outputs["dense_desc"][0]
    desc2 = outputs["dense_desc"][1]
    
    with torch.inference_mode():
        matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
        
    valid_matches = matches != -1
    match_indices = matches[valid_matches]

    matched_lines1 = line_seg1[valid_matches]
    matched_lines2 = line_seg2[match_indices]
    
    imgs_to_plot = [K.tensor_to_image(torch_img1), K.tensor_to_image(torch_img2)]

    fig = plot_images(imgs_to_plot, ["Image 1 - detected lines", "Image 2 - detected lines"])
    if line_style == "Line Matches":
        lines_to_plot = [line_seg1.numpy(), line_seg2.numpy()]
        plot_lines(lines_to_plot, fig, ps=3, lw=2, indices={0, 1})
    elif line_style == "Color Line Matches":
        plot_color_line_matches([matched_lines1, matched_lines2], fig, lw=2)
    # elif line_style == "Line Segment Homography Warping":
    #     H_ransac, correspondence_mask = ransac(
    #         matched_lines1.flip(dims=(2,)), matched_lines2.flip(dims=(2,))
    #         )
    #     img1_warp_to2 = K.geometry.warp_perspective(
    #         torch_img1[None], H_ransac[None], (torch_img1.shape[1:])
    #         )
    #     fig = plot_images(
    #             [K.tensor_to_image(torch_img2), K.tensor_to_image(img1_warp_to2)],
    #             ["Image 2", "Image 1 wrapped to 2"],
    #         )
    return fig



description = """Line Segment Matching with Kornia

In this space you can try out Line Segment Matching with the Kornia library as seen in [this tutorial](https://kornia-tutorials.readthedocs.io/en/latest/line_detection_and_matching_sold2.html).

Just upload two images of a scene with different view points, choose an option for output and run the demo.
"""


Iface = gr.Interface(
    fn=infer,
    inputs=[gr.components.Image(),
            gr.components.Image(), 
            gr.components.Dropdown(["Line Matches", 
                                    "Color Line Matches", 
                                    #"Line Segment Homography Warping",
                                    ], 
                                   value="Line Matches", 
                                   label="Options"),
            ],
    outputs=gr.components.Plot(),
    examples=[["terrace0.JPG", "terrace1.JPG"]],
    title="Line Segment Matching with Kornia",
    description=description,
).launch()