Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,870 Bytes
3330f45 1fc8d06 b83d18f 3330f45 51276d0 6400e55 3330f45 51276d0 3330f45 184daa2 0e6feda 5cb3999 6400e55 c3ae240 6400e55 a3657ef c3ae240 6400e55 51276d0 b83d18f 3330f45 c3ae240 a3657ef 3330f45 51276d0 a3657ef 3330f45 51276d0 3330f45 6400e55 ee61c84 c3ae240 ee61c84 3330f45 c3ae240 a3657ef c3ae240 b83d18f c3ae240 6400e55 c3ae240 ee61c84 c3ae240 6400e55 c3ae240 6a497cb 51276d0 c3ae240 51276d0 e8943d1 6400e55 a3657ef 51276d0 a3657ef e8943d1 a3657ef c3ae240 e8943d1 ee61c84 51276d0 e8943d1 ee61c84 a3657ef c3ae240 51276d0 ee61c84 51276d0 c3ae240 51276d0 a3657ef 51276d0 c3ae240 51276d0 e8943d1 a3657ef e8943d1 51276d0 e8943d1 51276d0 e8943d1 51276d0 9c3d0dc 51276d0 3330f45 a3657ef c3ae240 d28e6fc 6400e55 c3ae240 3330f45 b83d18f 6400e55 c3ae240 a3657ef 6400e55 c3ae240 6400e55 c3ae240 6400e55 c3ae240 6400e55 c3ae240 a3657ef c3ae240 a3657ef c3ae240 a3657ef c3ae240 a3657ef 0e6feda d28e6fc c3ae240 d28e6fc c3ae240 a3657ef 6400e55 c3ae240 6400e55 c3ae240 6400e55 c3ae240 a3657ef c3ae240 a3657ef c3ae240 a3657ef c3ae240 a3657ef c3ae240 d28e6fc 3330f45 6a497cb a3657ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os, gc, random, re
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline, # for Hi-Res Fix
ControlNetModel,
DPMSolverMultistepScheduler,
)
# Quiet matplotlib cache warning on Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
# ---- base models for the two tabs ----
BASE_MODELS = {
"stable-diffusion-v1-5": "runwayml/stable-diffusion-v1-5",
"dream": "Lykon/dreamshaper-8",
}
# ControlNet (QR Monster v2 for SD15)
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"
DTYPE = torch.float16
# ---------- helpers ----------
def snap8(x: int) -> int:
x = max(256, min(1024, int(x)))
return x - (x % 8)
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def make_qr(url="https://example.com", size=768, border=12, back_color="#FFFFFF", blur_radius=0.0):
"""
IMPORTANT for Method 1: give ControlNet a sharp, black-on-WHITE QR (no blur).
"""
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
img = img.resize((int(size), int(size)), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.0, feather: float = 1.0) -> Image.Image:
"""Optional gentle repair. Default OFF for Method 1."""
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None])
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# ---------- lazy pipelines (CPU-offloaded for ZeroGPU) ----------
_CN = None # shared ControlNet QR Monster
_CN_TXT2IMG = {} # per-base-model txt2img pipes
_CN_IMG2IMG = {} # per-base-model img2img pipes
def _base_scheduler_for(pipe):
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
return pipe
def get_cn():
global _CN
if _CN is None:
_CN = ControlNetModel.from_pretrained(CN_QRMON, torch_dtype=DTYPE, use_safetensors=True)
return _CN
def get_qrmon_txt2img_pipe(model_id: str):
if model_id not in _CN_TXT2IMG:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=get_cn(),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_TXT2IMG[model_id] = _base_scheduler_for(pipe)
return _CN_TXT2IMG[model_id]
def get_qrmon_img2img_pipe(model_id: str):
if model_id not in _CN_IMG2IMG:
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=get_cn(),
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
_CN_IMG2IMG[model_id] = _base_scheduler_for(pipe)
return _CN_IMG2IMG[model_id]
# -------- Method 1: QR control model in text-to-image (+ optional Hi-Res Fix) --------
def _qr_txt2img_core(model_id: str,
url: str, style_prompt: str, negative: str,
steps: int, cfg: float, size: int, border: int,
qr_weight: float, seed: int,
use_hires: bool, hires_upscale: float, hires_strength: float,
repair_strength: float, feather: float):
s = snap8(size)
# Control image: crisp black-on-white QR
qr_img = make_qr(url=url, size=s, border=int(border), back_color="#FFFFFF", blur_radius=0.0)
# Seed / generator
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device="cuda").manual_seed(int(seed))
# --- Stage A: txt2img with ControlNet
pipe = get_qrmon_txt2img_pipe(model_id)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=qr_img, # control image for txt2img
controlnet_conditioning_scale=float(qr_weight), # ~1.0–1.2 works well
control_guidance_start=0.0,
control_guidance_end=1.0,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
lowres = out.images[0]
lowres = enforce_qr_contrast(lowres, qr_img, strength=float(repair_strength), feather=float(feather))
# --- Optional Stage B: Hi-Res Fix (img2img with same QR)
final = lowres
if use_hires:
up = max(1.0, min(2.0, float(hires_upscale)))
W = snap8(int(s * up)); H = W
pipe2 = get_qrmon_img2img_pipe(model_id)
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out2 = pipe2(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
image=lowres, # init image
control_image=qr_img, # same QR
strength=float(hires_strength), # ~0.7 like "Hires Fix"
controlnet_conditioning_scale=float(qr_weight),
control_guidance_start=0.0,
control_guidance_end=1.0,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=W, height=H,
generator=gen,
)
final = out2.images[0]
final = enforce_qr_contrast(final, qr_img, strength=float(repair_strength), feather=float(feather))
return final, lowres, qr_img
# Wrappers for each tab (so Gradio can bind without passing the model id)
@spaces.GPU(duration=120)
def qr_txt2img_sd15(*args):
return _qr_txt2img_core(BASE_MODELS["stable-diffusion-v1-5"], *args)
@spaces.GPU(duration=120)
def qr_txt2img_dream(*args):
return _qr_txt2img_core(BASE_MODELS["dream"], *args)
# ---------- UI ----------
with gr.Blocks() as demo:
gr.Markdown("# ZeroGPU • Method 1: QR Control (two base models)")
# ---- Tab 1: stable-diffusion-v1-5 (anime/illustration) ----
with gr.Tab("stable-diffusion-v1-5"):
url1 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt1 = gr.Textbox(label="Style prompt", value="japanese painting, elegant shrine and torii, distant mount fuji, autumn maple trees, warm sunlight, 1girl in kimono, highly detailed, intricate patterns, anime key visual, dramatic composition")
s_negative1= gr.Textbox(label="Negative prompt", value="ugly, low quality, blurry, nsfw, watermark, text, low contrast, deformed, extra digits")
size1 = gr.Slider(384, 1024, value=512, step=64, label="Canvas (px)")
steps1 = gr.Slider(10, 50, value=20, step=1, label="Steps")
cfg1 = gr.Slider(1.0, 12.0, value=7.0, step=0.1, label="CFG")
border1 = gr.Slider(2, 16, value=4, step=1, label="QR border (quiet zone)")
qr_w1 = gr.Slider(0.6, 1.6, value=1.5, step=0.05, label="QR control weight")
seed1 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
use_hires1 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up1 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str1 = gr.Slider(0.3, 0.9, value=0.7, step=0.05, label="Hi-Res denoise strength")
repair1 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather1 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
final_img1 = gr.Image(label="Final (or Hi-Res) image")
low_img1 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img1 = gr.Image(label="Control QR used")
gr.Button("Generate with stable-diffusion-v1-5").click(
qr_txt2img_sd15,
[url1, s_prompt1, s_negative1, steps1, cfg1, size1, border1, qr_w1, seed1,
use_hires1, hires_up1, hires_str1, repair1, feather1],
[final_img1, low_img1, ctrl_img1],
api_name="qr_txt2img_sd15"
)
# ---- Tab 2: DreamShaper (general art/painterly) ----
with gr.Tab("DreamShaper 8"):
url2 = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt2 = gr.Textbox(label="Style prompt", value="ornate baroque palace interior, gilded details, chandeliers, volumetric light, ultra detailed, cinematic")
s_negative2= gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, watermark, text, bad anatomy")
size2 = gr.Slider(384, 1024, value=512, step=64, label="Canvas (px)")
steps2 = gr.Slider(10, 50, value=24, step=1, label="Steps")
cfg2 = gr.Slider(1.0, 12.0, value=6.8, step=0.1, label="CFG")
border2 = gr.Slider(2, 16, value=8, step=1, label="QR border (quiet zone)")
qr_w2 = gr.Slider(0.6, 1.6, value=1.5, step=0.05, label="QR control weight")
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
use_hires2 = gr.Checkbox(value=True, label="Hi-Res Fix (img2img upscale)")
hires_up2 = gr.Slider(1.0, 2.0, value=2.0, step=0.25, label="Hi-Res upscale (×)")
hires_str2 = gr.Slider(0.3, 0.9, value=0.7, step=0.05, label="Hi-Res denoise strength")
repair2 = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Post repair strength (optional)")
feather2 = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
final_img2 = gr.Image(label="Final (or Hi-Res) image")
low_img2 = gr.Image(label="Low-res (Stage A) preview")
ctrl_img2 = gr.Image(label="Control QR used")
gr.Button("Generate with DreamShaper 8").click(
qr_txt2img_dream,
[url2, s_prompt2, s_negative2, steps2, cfg2, size2, border2, qr_w2, seed2,
use_hires2, hires_up2, hires_str2, repair2, feather2],
[final_img2, low_img2, ctrl_img2],
api_name="qr_txt2img_dream"
)
if __name__ == "__main__":
demo.queue(max_size=12).launch()
|