Spaces:
Sleeping
Sleeping
File size: 9,999 Bytes
dad0452 e50d6ea 38540df 033297c e50d6ea aa8ff05 e50d6ea 37ab34b e50d6ea 37ab34b e50d6ea 38540df dc5f61d e50d6ea d0da1e0 e50d6ea 0e55e5b e50d6ea 37ab34b e50d6ea dc5f61d e50d6ea 38540df e50d6ea 37ab34b e50d6ea 37ab34b e50d6ea 37ab34b e50d6ea 37ab34b e50d6ea 5286e36 e50d6ea d0da1e0 e50d6ea 37ab34b e50d6ea 5286e36 e50d6ea dad0452 e50d6ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
import os
# add model interface : https://ui.endpoints.huggingface.co/
api_token = os.environ.get("HF_TOKEN", None)
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
# list_llm = ["kodetr/stunting-qa-v3", "kodetr/stunting-qa-v2"]
list_llm = ["kodetr/stunting-qa-v3", "meta-llama/Meta-Llama-3-8B-Instruct"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF document
def load_doc(list_file_path):
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1024,
chunk_overlap = 64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "kodetr/stunting-qa-v3":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token = api_token,
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token = api_token,
repo_id=llm_model,
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever=vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
# Create a list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
# Load document and create splits
doc_splits = load_doc(list_file_path)
# Create or load vector database
vector_db = create_db(doc_splits)
return vector_db, "Database created!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# print("llm_option",llm_option)
llm_name = list_llm[llm_option]
print("llm_name: ",llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot sudah siap!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
return list_file_path
def demo():
# with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>STUNTING RAG</h1><center>")
gr.Markdown("<center>Stunting pada anak menggunakan pengambilan augmented generation (RAG) pada dokumen PDF<center>")
with gr.Row():
with gr.Column(scale = 86):
gr.Markdown("<b>Unggah dokumen PDF</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True, label="Unggah dokumen PDF")
with gr.Row():
db_btn = gr.Button("Buat database vektor")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
gr.Markdown("<style>body { font-size: 16px; }</style><b>Pilih Model</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
with gr.Row():
with gr.Accordion("Parameter masukan LLM", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Mengontrol keacakan dalam pembuatan token", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Maksimum Token Baru", info="Jumlah maksimum token yang akan dihasilkan",interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Jumlah token untuk memilih token berikutnya", interactive=True)
with gr.Row():
qachain_btn = gr.Button("Inisialisasi Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
with gr.Column(scale = 200):
gr.Markdown("<b>Ngobrol dengan Dokumen Anda</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Konteks yang relevan dari dokumen sumber", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ajukan pertanyaan", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Preprocessing events
db_btn.click(initialize_database, \
inputs=[document], \
outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |