File size: 14,484 Bytes
0b5716b
 
2b30b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a988545
 
fa7b530
2b30b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5716b
2b30b0d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import altair as alt
import streamlit as st
from streamlit_option_menu import option_menu
import streamlit.components.v1 as html
from  PIL import Image
import sys
import os
import re
import pandas as pd
import numpy as np

import tensorflow as tf
# print(tf.__version__)

import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras import callbacks
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Embedding, Dense, Dropout, GlobalMaxPooling1D
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.regularizers import l2
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from imblearn.over_sampling import SMOTE
from PIL import Image

os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # -1 CPU | 0 GPU

# Set seed untuk reproduksibilitas
np.random.seed(42)
tf.random.set_seed(42)

class RealTimeLogger(callbacks.Callback):
    def __init__(self, container, epochs):
        super().__init__()
        self.container = container
        self.epochs = epochs
        
    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        # Format log text dengan alignment
        log_text = (
            f"Epoch {epoch+1:03d}/{self.epochs:03d} | "
            f"Loss: {logs.get('loss', 0):.4f} | "
            f"Acc: {logs.get('accuracy', 0):.4f} | "
            f"Val Loss: {logs.get('val_loss', 0):.4f} | "
            f"Val Acc: {logs.get('val_accuracy', 0):.4f}\n"
        )
        
        # Update session state
        if 'training_logs' not in st.session_state:
            st.session_state.training_logs = []
            
        st.session_state.training_logs.insert(0, log_text)
        
        # Update tampilan real-time
        with self.container:
            st.subheader("Training Logs")
            st.code(
                "".join(st.session_state.training_logs[-100:]),  # Batasi 100 line terakhir
                language="log",
                line_numbers=True
            )

def clean_text(text):
    text = text.lower()
    text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
    return text

def load_data(file):
    lines = file.getvalue().decode("utf-8").splitlines()
    data, labels, bandwidth = [], [], []
    for line in lines:
        line = clean_text(line.strip())
        if "fake bandwidth" in line:
            labels.append("Fake")
            match = re.search(r'(\d+)', line)
            bandwidth.append(int(match.group()) if match else 0)
        elif "genuine bandwidth" in line:
            labels.append("Genuine")
            match = re.search(r'(\d+)', line)
            bandwidth.append(int(match.group()) if match else 0)
        elif "no heavy activity" in line:
            labels.append("No Heavy")
            bandwidth.append(0)
        else:
            continue
        data.append(line)
    return data, labels, bandwidth

def preprocess_text(texts):
    tokenizer = Tokenizer(num_words=10000, oov_token="<OOV>")
    tokenizer.fit_on_texts(texts)
    sequences = tokenizer.texts_to_sequences(texts)
    padded_sequences = pad_sequences(sequences, maxlen=100, padding='post')
    return tokenizer, padded_sequences

def build_cnn_model(input_length, num_classes=3, num_words=10000, embedding_dim=240):
    model = Sequential([
        # Perbaikan: Hapus parameter input_length dari Embedding
        Embedding(num_words, embedding_dim),
        Conv1D(256, 3, activation='relu', kernel_regularizer=l2(0.01)),
        MaxPooling1D(3),
        Conv1D(128, 3, activation='relu', kernel_regularizer=l2(0.01)),
        MaxPooling1D(3),
        Conv1D(64, 3, activation='relu', kernel_regularizer=l2(0.01)),
        MaxPooling1D(3),
        GlobalMaxPooling1D(),
        Dense(128, activation='relu', kernel_regularizer=l2(0.01)),
        Dropout(0.5),
        Dense(num_classes, activation='softmax')
    ])
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model


#----------------------------------------------------------------------------------------------------
# Sidebar
#----------------------------------------------------------------------------------------------------
with st.sidebar:
    choose = option_menu("Brandwidth", ["ABOUT", "CNN", "GRU", "LSTM", "COMBINE"],
                         icons=['person-circle', 'bar-chart-steps', 'activity', 'calendar-week','transparency'],
                         menu_icon="router", default_index=0,
                         styles={
                            "container": {"padding": "5!important", "background-color": "#fafafa"},
                            "icon": {"color": "black", "font-size": "25px"}, 
                            "nav-link": {"font-size": "16px", "text-align": "left", "margin":"0px", "--hover-color": "#eee"},
                            "nav-link-selected": {"background-color": "#02ab21"},
                        }
    )

#----------------------------------------------------------------------------------------------------
# ABOUT
#----------------------------------------------------------------------------------------------------
# image_about = Image.open(r'/teamspace/studios/this_studio/icons/datamining.jpg')
if choose == "ABOUT":

    col1, col2 = st.columns( [0.8, 0.2])
    with col1:             
        st.markdown(
        """ <style> .font {
        font-size:35px ; color: #000000; font-weight: bold;} 

        .custom-text {
            font-size: 18px;
            text-align: justify;
            color: #000000;
        }
        </style> """, unsafe_allow_html=True)
        st.markdown('<p class="font">ABOUT</p>', unsafe_allow_html=True)
        
    # with col2:  
    #     st.markdown("## 🧠")

    st.write('<p class="custom-text">Saya adalah seorang peneliti dan pengembang di bidang ilmu komputer yang memiliki fokus pada pemrosesan data dan pengklasifikasian bandwidth jaringan menggunakan pendekatan combine classification. Dalam pekerjaan saya, saya menggabungkan berbagai algoritma machine learning untuk meningkatkan akurasi dalam klasifikasi bandwidth, termasuk algoritma seperti Decision Tree, Random Forest, SVM, dan K-Nearest Neighbors., please visit website at: https://kodetr.com</p>', unsafe_allow_html=True)    
    # st.image(image_about, width=700)

#----------------------------------------------------------------------------------------------------
# CNN
#----------------------------------------------------------------------------------------------------

elif choose == "CNN":

    st.title("Klasifikasi Bandwidth dengan CNN")
    st.write("Aplikasi ini menggunakan model CNN untuk mengklasifikasikan data bandwidth menjadi Fake, Genuine, atau No Heavy Activity")

    # Upload file
    training_file = st.file_uploader("Upload Data Training (.txt)", accept_multiple_files=True)
    real_files = st.file_uploader("Upload Data Real (.txt)", accept_multiple_files=True)

    # Parameter model
    epochs = st.number_input("Jumlah Epoch", min_value=1, value=2000)
    batch_size = st.number_input("Ukuran Batch", min_value=1, value=32)

    if st.button("Proses Data"):
        if training_file and real_files:
            # Memproses data training
            try:
                data_train, labels_train, bandwidth_train = load_data(training_file)
                if len(data_train) == 0:
                    st.error("Data training tidak valid atau kosong!")
                    st.stop()

                # Preprocessing
                tokenizer, X_train = preprocess_text(data_train)
                le = LabelEncoder()
                labels_encoded = le.fit_transform(labels_train)
                
                # Split data
                X_train, X_test, y_train, y_test, bw_train, bw_test = train_test_split(
                    X_train, labels_encoded, bandwidth_train, 
                    test_size=0.2, stratify=labels_encoded, random_state=42
                )
                
                # SMOTE
                smote = SMOTE(random_state=42)
                X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
                
                # Konversi ke kategorikal
                y_train_cat = tf.keras.utils.to_categorical(y_train_smote, num_classes=3)
                y_test_cat = tf.keras.utils.to_categorical(y_test, num_classes=3)
                
                if 'training_progress' not in st.session_state:
                    st.session_state.training_progress = []

                # Buat container untuk live update
                live_container = st.empty()

                # Membangun dan melatih model
                model = build_cnn_model(X_train.shape[1])
                early_stop = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
                reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.5, verbose=1)
 
                history = model.fit(
                    X_train_smote, y_train_cat,
                    epochs=epochs,
                    batch_size=batch_size,
                    validation_data=(X_test, y_test_cat),
                    # callbacks=[early_stop, reduce_lr],
                    # verbose=2
                    callbacks=[
                        EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
                        ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.5, verbose=0),
                        RealTimeLogger(live_container, epochs)
                    ],
                    verbose=0
                )
                # Tampilkan grafik training history
                st.subheader("πŸ“ˆ Grafik Hasil Training")

                # Buat layout 2 kolom
                col1, col2 = st.columns(2)

                with col1:
                    # Grafik Loss
                    fig, ax = plt.subplots(figsize=(10, 5))
                    ax.plot(history.history['loss'], label='Training Loss', color='#FF4B4B', linewidth=2)
                    ax.plot(history.history['val_loss'], label='Validation Loss', color='#0068C9', linewidth=2)
                    ax.set_title('Perkembangan Loss', fontsize=14)
                    ax.set_xlabel('Epoch', fontsize=12)
                    ax.set_ylabel('Loss', fontsize=12)
                    ax.grid(True, alpha=0.3)
                    ax.legend()
                    st.pyplot(fig)

                with col2:
                    # Grafik Accuracy
                    fig, ax = plt.subplots(figsize=(10, 5))
                    ax.plot(history.history['accuracy'], label='Training Accuracy', color='#00D154', linewidth=2)
                    ax.plot(history.history['val_accuracy'], label='Validation Accuracy', color='#FF922B', linewidth=2)
                    ax.set_title('Perkembangan Accuracy', fontsize=14)
                    ax.set_xlabel('Epoch', fontsize=12)
                    ax.set_ylabel('Accuracy', fontsize=12)
                    ax.grid(True, alpha=0.3)
                    ax.legend()
                    st.pyplot(fig)

                # Evaluasi
                loss, acc = model.evaluate(X_test, y_test_cat, verbose=0)
                st.success(f"Akurasi Model: {acc*100:.2f}%")
            
                # Memproses data real
                data_real, labels_real, bandwidth_real = [], [], []
                for file in real_files:
                    d, lbl, bw = load_data(file)
                    data_real.extend(d)
                    labels_real.extend(lbl)
                    bandwidth_real.extend(bw)

                # Menghitung statistik
                fake = labels_real.count('Fake')
                genuine = labels_real.count('Genuine')
                no_heavy = labels_real.count('No Heavy')
                total = len(labels_real)

                # Visualisasi
                fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
                
                # Pie chart
                ax1.pie([fake, genuine, no_heavy], 
                    labels=['Fake', 'Genuine', 'No Heavy'], 
                    autopct='%1.1f%%')
                ax1.set_title('Distribusi Kategori Bandwidth')
                
                # Bar plot bandwidth
                avg_bw = [
                    np.mean([bw for lbl, bw in zip(labels_real, bandwidth_real) if lbl == 'Fake'] or [0]),
                    np.mean([bw for lbl, bw in zip(labels_real, bandwidth_real) if lbl == 'Genuine'] or [0]),
                    0
                ]
                ax2.bar(['Fake', 'Genuine', 'No Heavy'], avg_bw)
                ax2.set_title('Rata-rata Bandwidth per Kategori')
                ax2.set_ylabel('Mbps')
                
                st.pyplot(fig)

                # Tampilkan statistik
                st.subheader("Statistik Data Real:")
                st.write(f"Total Data: {total}")
                st.write(f"Fake Bandwidth: {fake} ({fake/total*100:.2f}%)")
                st.write(f"Genuine Bandwidth: {genuine} ({genuine/total*100:.2f}%)")
                st.write(f"No Heavy Activity: {no_heavy} ({no_heavy/total*100:.2f}%)")

            except Exception as e:
                st.error(f"Terjadi kesalahan: {str(e)}")
        else:
            st.warning("Harap upload file training dan file real terlebih dahulu!")

#----------------------------------------------------------------------------------------------------
# GRU
#----------------------------------------------------------------------------------------------------

elif choose == "GRU":
    st.title("Klasifikasi Bandwidth dengan GRU")

    # st.markdown('Design GRU')
    
   

#----------------------------------------------------------------------------------------------------
# LSTM
#----------------------------------------------------------------------------------------------------

elif choose == "LSTM":
    st.title("Klasifikasi Bandwidth dengan LSTM")

    # st.subheader('Test 123')
    # st.markdown('Design LSTM')


#----------------------------------------------------------------------------------------------------
# Combine
#----------------------------------------------------------------------------------------------------

elif choose == "COMBINE":
    st.title("Klasifikasi Bandwidth dengan COMBINE")

    # st.subheader('Test 123')
    # st.markdown('Design LSTM')