File size: 8,909 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from typing import Optional, Tuple

import pandas as pd
import torchaudio
from examples.speech_to_text.data_utils import (
    create_zip,
    extract_fbank_features,
    filter_manifest_df,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    load_df_from_tsv,
    save_df_to_tsv,
)
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio.datasets.utils import download_url, extract_archive
from tqdm import tqdm


log = logging.getLogger(__name__)


MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]


class CoVoST(Dataset):
    """Create a Dataset for CoVoST (https://github.com/facebookresearch/covost).

    Args:
        root (str): root path to the dataset and generated manifests/features
        source_language (str): source (audio) language
        target_language (str, optional): target (text) language,
        None for no translation (default: None)
        version (int, optional): CoVoST version. (default: 2)
        download (bool, optional): Whether to download the dataset if it is not
        found at root path. (default: ``False``).
    """

    COVOST_URL_TEMPLATE = (
        "https://dl.fbaipublicfiles.com/covost/"
        "covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
    )

    VERSIONS = {2}
    SPLITS = ["train", "dev", "test"]

    XX_EN_LANGUAGES = {
        1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"],
        2: [
            "fr",
            "de",
            "es",
            "ca",
            "it",
            "ru",
            "zh-CN",
            "pt",
            "fa",
            "et",
            "mn",
            "nl",
            "tr",
            "ar",
            "sv-SE",
            "lv",
            "sl",
            "ta",
            "ja",
            "id",
            "cy",
        ],
    }
    EN_XX_LANGUAGES = {
        1: [],
        2: [
            "de",
            "tr",
            "fa",
            "sv-SE",
            "mn",
            "zh-CN",
            "cy",
            "ca",
            "sl",
            "et",
            "id",
            "ar",
            "ta",
            "lv",
            "ja",
        ],
    }

    def __init__(
        self,
        root: str,
        split: str,
        source_language: str,
        target_language: Optional[str] = None,
        version: int = 2,
    ) -> None:
        assert version in self.VERSIONS and split in self.SPLITS
        assert source_language is not None
        self.no_translation = target_language is None
        if not self.no_translation:
            assert "en" in {source_language, target_language}
            if source_language == "en":
                assert target_language in self.EN_XX_LANGUAGES[version]
            else:
                assert source_language in self.XX_EN_LANGUAGES[version]
        else:
            # Hack here so that we can get "split" column from CoVoST TSV.
            # Note that we use CoVoST train split for ASR which is an extension
            # to Common Voice train split.
            target_language = "de" if source_language == "en" else "en"

        self.root: Path = Path(root)

        cv_tsv_path = self.root / "validated.tsv"
        assert cv_tsv_path.is_file()

        covost_url = self.COVOST_URL_TEMPLATE.format(
            src_lang=source_language, tgt_lang=target_language
        )
        covost_archive = self.root / Path(covost_url).name
        if not covost_archive.is_file():
            download_url(covost_url, self.root.as_posix(), hash_value=None)
        extract_archive(covost_archive.as_posix())

        cv_tsv = load_df_from_tsv(cv_tsv_path)
        covost_tsv = load_df_from_tsv(
            self.root / Path(covost_url).name.replace(".tar.gz", "")
        )
        df = pd.merge(
            left=cv_tsv[["path", "sentence", "client_id"]],
            right=covost_tsv[["path", "translation", "split"]],
            how="inner",
            on="path",
        )
        if split == "train":
            df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")]
        else:
            df = df[df["split"] == split]
        data = df.to_dict(orient="index").items()
        data = [v for k, v in sorted(data, key=lambda x: x[0])]
        self.data = []
        for e in data:
            try:
                path = self.root / "clips" / e["path"]
                _ = torchaudio.info(path.as_posix())
                self.data.append(e)
            except RuntimeError:
                pass

    def __getitem__(
        self, n: int
    ) -> Tuple[Tensor, int, str, str, Optional[str], str, str]:
        """Load the n-th sample from the dataset.

        Args:
            n (int): The index of the sample to be loaded

        Returns:
            tuple: ``(waveform, sample_rate, sentence, translation, speaker_id,
            sample_id)``
        """
        data = self.data[n]
        path = self.root / "clips" / data["path"]
        waveform, sample_rate = torchaudio.load(path)
        sentence = data["sentence"]
        translation = None if self.no_translation else data["translation"]
        speaker_id = data["client_id"]
        _id = data["path"].replace(".mp3", "")
        return waveform, sample_rate, sentence, translation, speaker_id, _id

    def __len__(self) -> int:
        return len(self.data)


def process(args):
    root = Path(args.data_root).absolute() / args.src_lang
    if not root.is_dir():
        raise NotADirectoryError(f"{root} does not exist")
    # Extract features
    feature_root = root / "fbank80"
    feature_root.mkdir(exist_ok=True)
    for split in CoVoST.SPLITS:
        print(f"Fetching split {split}...")
        dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
        print("Extracting log mel filter bank features...")
        for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
            extract_fbank_features(
                waveform, sample_rate, feature_root / f"{utt_id}.npy"
            )
    # Pack features into ZIP
    zip_path = root / "fbank80.zip"
    print("ZIPing features...")
    create_zip(feature_root, zip_path)
    print("Fetching ZIP manifest...")
    audio_paths, audio_lengths = get_zip_manifest(zip_path)
    # Generate TSV manifest
    print("Generating manifest...")
    train_text = []
    task = f"asr_{args.src_lang}"
    if args.tgt_lang is not None:
        task = f"st_{args.src_lang}_{args.tgt_lang}"
    for split in CoVoST.SPLITS:
        manifest = {c: [] for c in MANIFEST_COLUMNS}
        dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
        for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
            manifest["id"].append(utt_id)
            manifest["audio"].append(audio_paths[utt_id])
            manifest["n_frames"].append(audio_lengths[utt_id])
            manifest["tgt_text"].append(src_utt if args.tgt_lang is None else tgt_utt)
            manifest["speaker"].append(speaker_id)
        is_train_split = split.startswith("train")
        if is_train_split:
            train_text.extend(manifest["tgt_text"])
        df = pd.DataFrame.from_dict(manifest)
        df = filter_manifest_df(df, is_train_split=is_train_split)
        save_df_to_tsv(df, root / f"{split}_{task}.tsv")
    # Generate vocab
    vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
    spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{task}"
    with NamedTemporaryFile(mode="w") as f:
        for t in train_text:
            f.write(t + "\n")
        gen_vocab(
            Path(f.name),
            root / spm_filename_prefix,
            args.vocab_type,
            args.vocab_size
        )
    # Generate config YAML
    gen_config_yaml(
        root,
        spm_filename=spm_filename_prefix + ".model",
        yaml_filename=f"config_{task}.yaml",
        specaugment_policy="lb",
    )
    # Clean up
    shutil.rmtree(feature_root)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data-root", "-d", required=True, type=str,
        help="data root with sub-folders for each language <root>/<src_lang>"
    )
    parser.add_argument(
        "--vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument("--vocab-size", default=1000, type=int)
    parser.add_argument("--src-lang", "-s", required=True, type=str)
    parser.add_argument("--tgt-lang", "-t", type=str)
    args = parser.parse_args()

    process(args)


if __name__ == "__main__":
    main()