Spaces:
Running
Running
File size: 15,266 Bytes
650c5f6 cbe5e70 650c5f6 369592b 650c5f6 56bbba2 650c5f6 08384c6 650c5f6 6bd1b64 650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import torch
import numpy as np
from fairseq import utils,tasks
from utils.checkpoint_utils import load_model_ensemble_and_task
from utils.eval_utils import eval_step
from tasks.refcoco import RefcocoTask
from models.polyformer import PolyFormerModel
from PIL import Image
import cv2
import math
from skimage import draw
tasks.register_task('refcoco', RefcocoTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = use_cuda
# Load pretrained ckpt & config
overrides={"bpe_dir":"utils/BPE"}
models, cfg, task = load_model_ensemble_and_task(
utils.split_paths('polyformer_l_refcocog.pt'),
arg_overrides=overrides
)
# print(cfg)
cfg.common.seed = 7
cfg.generation.beam = 5
cfg.generation.min_len = 12
cfg.generation.max_len_a = 0
cfg.generation.max_len_b = 420
cfg.generation.no_repeat_ngram_size = 3
# cfg.max_tgt_length = 256
#cfg.num_bins = 1000
cfg.task.patch_image_size = 512
from bert.tokenization_bert import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
# model = ''
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Image transform
from torchvision import transforms
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
# Text preprocess
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
# Construct input for refcoco task
patch_image_size = cfg.task.patch_image_size
def construct_sample(image: Image, text: str):
w, h = image.size
w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0)
h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0)
patch_image = patch_resize_transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
prompt = ' which region does the text " {} " describe?'.format(text)
tokenized = tokenizer.batch_encode_plus([prompt], padding="longest", return_tensors="pt")
src_tokens = tokenized["input_ids"]
att_masks = tokenized["attention_mask"]
src_lengths = torch.LongTensor(att_masks.ne(0).long().sum())
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"att_masks": att_masks,
"patch_images": patch_image,
"patch_masks": patch_mask,
},
"w_resize_ratios": w_resize_ratio,
"h_resize_ratios": h_resize_ratio,
"region_coords": torch.randn(1, 4),
"label": np.zeros((512,512)),
"poly": 'None',
"text": text
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
from io import BytesIO
import base64
import re
def pre_caption(caption):
caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace('<person>', 'person')
caption = re.sub(
r"\s{2,}",
' ',
caption,
)
caption = caption.rstrip('\n')
caption = caption.strip(' ')
return caption
def convert_pts(coeffs):
pts = []
for i in range(len(coeffs) // 2):
pts.append([coeffs[2 * i + 1], coeffs[2 * i]]) # y, x
return np.array(pts, np.int32)
def get_mask_from_codes(codes, img_size):
masks = [np.zeros(img_size)]
for code in codes:
mask = draw.polygon2mask(img_size, convert_pts(code))
mask = np.array(mask, np.uint8)
masks.append(mask)
mask = sum(masks)
mask = mask > 0
return mask.astype(np.uint8)
def overlay_predictions(img, mask=None, polygons=None, bbox=None, color_box=(0, 255, 0), color_mask=[255, 102, 102], color_poly=[255, 0, 0], thickness=3, radius=6):
overlayed = img.copy()
if bbox is not None:
overlayed = draw_bbox(overlayed, bbox, color=color_box, thickness=thickness)
if mask is not None:
overlayed = overlay_davis(overlayed, mask, colors=[[0, 0, 0], color_mask])
if polygons is not None:
overlayed = plot_polygons(overlayed, polygons, color=color_poly, radius=radius)
return overlayed
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 102, 102]], cscale=1, alpha=0.4): # [255, 178, 102] orange [102, 178, 255] red
from scipy.ndimage.morphology import binary_dilation
colors = np.reshape(colors, (-1, 3))
colors = np.atleast_2d(colors) * cscale
im_overlay = image.copy()
object_ids = np.unique(mask)
h_i, w_i = image.shape[0:2]
h_m, w_m = mask.shape[0:2]
if h_i != h_m:
mask = cv2.resize(mask, [h_i, w_i], interpolation=cv2.INTER_NEAREST)
for object_id in object_ids[1:]:
# Overlay color on binary mask
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
binary_mask = mask == object_id
# Compose image
im_overlay[binary_mask] = foreground[binary_mask]
return im_overlay.astype(image.dtype)
def draw_bbox(img, box, color=(0, 255, 0), thickness=2):
x1, y1, x2, y2 = box
return cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=thickness)
def plot_polygons(img, polygons, color=(255, 0, 0), radius=7):
for polygon in polygons:
if len(polygon) > 0:
polygon = np.reshape(polygon[:len(polygon)-len(polygon)%2], (len(polygon)//2, 2)).astype(np.int16)
for i, point in enumerate(polygon):
img = cv2.circle(img, point, radius, color, thickness=-1)
img = cv2.circle(img, polygon[0], radius, color, thickness=-1)
return img
def plot_arrow(img, polygons, color=(128, 128, 128), thickness=3, tip_length=0.3):
for polygon in polygons:
if len(polygon) > 0:
polygon = np.reshape(polygon[:len(polygon)-len(polygon)%2], (len(polygon)//2, 2)).astype(np.int16)
for i, point in enumerate(polygon):
if i > 0:
img = cv2.arrowedLine(img, polygon[i-1], point, color, thickness=thickness, tipLength=tip_length)
return img
def downsample_polygon(polygon, ds_rate=25):
points = np.array(polygon).reshape(int(len(polygon) / 2), 2)
points = points[::ds_rate]
return list(points.flatten())
def downsample_polygons(polygons, ds_rate=25):
polygons_ds = []
for polygon in polygons:
polygons_ds.append(downsample_polygon(polygon, ds_rate))
return polygons_ds
def visual_grounding(image, text):
# Construct input sample & preprocess for GPU if cuda available
sample = construct_sample(image, text.lower())
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
with torch.no_grad():
if isinstance(models, list):
model = models[0]
model = model.float()
min_len = 6
max_len = 210
model.eval()
img = sample["net_input"]["patch_images"]
b = img.shape[0]
prev_output_token_11 = [[0] for _ in range(b)]
prev_output_token_12 = [[0] for _ in range(b)]
prev_output_token_21 = [[0] for _ in range(b)]
prev_output_token_22 = [[0] for _ in range(b)]
delta_x1 = [[0] for _ in range(b)]
delta_y1 = [[0] for _ in range(b)]
delta_x2 = [[1] for _ in range(b)]
delta_y2 = [[1] for _ in range(b)]
gen_out = [[] for _ in range(b)]
n_bins = 64
unfinish_flag = np.ones(b)
i = 0
encoder_out = model.encoder(
sample['net_input']['src_tokens'],
src_lengths=sample['net_input']['src_lengths'],
att_masks=sample['net_input']['att_masks'],
patch_images=sample['net_input']['patch_images'],
patch_masks=sample['net_input']['patch_masks'],
token_embeddings=None,
return_all_hiddens=False,
sample_patch_num=None
)
attn_masks = []
while i < max_len and unfinish_flag.any():
# print(i)
prev_output_tokens_11_tensor = torch.tensor(np.array(prev_output_token_11)).long()
prev_output_tokens_12_tensor = torch.tensor(np.array(prev_output_token_12)).long()
prev_output_tokens_21_tensor = torch.tensor(np.array(prev_output_token_21)).long()
prev_output_tokens_22_tensor = torch.tensor(np.array(prev_output_token_22)).long()
delta_x1_tensor = torch.tensor(np.array(delta_x1)).float()
delta_x2_tensor = torch.tensor(np.array(delta_x2)).float()
delta_y1_tensor = torch.tensor(np.array(delta_y1)).float()
delta_y2_tensor = torch.tensor(np.array(delta_y2)).float()
net_output = model.decoder(
prev_output_tokens_11_tensor,
prev_output_tokens_12_tensor,
prev_output_tokens_21_tensor,
prev_output_tokens_22_tensor,
delta_x1_tensor,
delta_y1_tensor,
delta_x2_tensor,
delta_y2_tensor,
code_masks=None,
encoder_out=encoder_out,
features_only=False,
alignment_layer=None,
alignment_heads=None,
src_lengths=sample['net_input']['src_lengths'],
return_all_hiddens=False
)
cls_output = net_output[0]
cls_type = torch.argmax(cls_output, 2)
reg_output = net_output[1].squeeze(-1)
attn = net_output[2]['attn']
attn_arrays = [att.detach().cpu().numpy() for att in attn]
attn_arrays = np.concatenate(attn_arrays, 0)
attn_arrays = np.mean(attn_arrays, 0)
attn_arrays = attn_arrays[i, :256].reshape(16, 16)
h, w = image.size
attn_mask = cv2.resize(attn_arrays.astype(np.float32), (h, w))
attn_masks.append(attn_mask)
for j in range(b):
# print(j)
if unfinish_flag[j] == 1: # prediction is not finished
cls_j = cls_type[j, i].item()
if cls_j == 0 or (cls_j == 2 and i < min_len): # 0 for coordinate tokens; 2 for eos
output_j_x, output_j_y = reg_output[j, i].cpu().numpy()
output_j_x = min(output_j_x, 1)
output_j_y = min(output_j_y, 1)
gen_out[j].extend([output_j_x, output_j_y])
output_j_x = output_j_x * (n_bins - 1)
output_j_y = output_j_y * (n_bins - 1)
output_j_x_floor = math.floor(output_j_x)
output_j_y_floor = math.floor(output_j_y)
output_j_x_ceil = math.ceil(output_j_x)
output_j_y_ceil = math.ceil(output_j_y)
# convert to token
prev_output_token_11[j].append(output_j_x_floor * n_bins + output_j_y_floor + 4)
prev_output_token_12[j].append(output_j_x_floor * n_bins + output_j_y_ceil + 4)
prev_output_token_21[j].append(output_j_x_ceil * n_bins + output_j_y_floor + 4)
prev_output_token_22[j].append(output_j_x_ceil * n_bins + output_j_y_ceil + 4)
delta_x = output_j_x - output_j_x_floor
delta_y = output_j_y - output_j_y_floor
elif cls_j == 1: # 1 for separator tokens
gen_out[j].append(2) # insert 2 indicating separator tokens
prev_output_token_11[j].append(3)
prev_output_token_12[j].append(3)
prev_output_token_21[j].append(3)
prev_output_token_22[j].append(3)
delta_x = 0
delta_y = 0
else: # eos is predicted and i >= min_len
unfinish_flag[j] = 0
gen_out[j].append(-1)
prev_output_token_11[j].append(2) # 2 is eos token
prev_output_token_12[j].append(2) # 2 is eos token
prev_output_token_21[j].append(2) # 2 is eos token
prev_output_token_22[j].append(2) # 2 is eos token
delta_x = 0
delta_y = 0
else: # prediction is finished
gen_out[j].append(-1)
prev_output_token_11[j].append(1) # 1 is padding token
prev_output_token_12[j].append(1)
prev_output_token_21[j].append(1)
prev_output_token_22[j].append(1)
delta_x = 0
delta_y = 0
delta_x1[j].append(delta_x)
delta_y1[j].append(delta_y)
delta_x2[j].append(1 - delta_x)
delta_y2[j].append(1 - delta_y)
i += 1
print("inference step: ", i)
hyps = []
hyps_det = []
n_poly_pred = []
b = len(gen_out)
for i in range(b):
gen_out_i = np.array(gen_out[i])
gen_out_i = gen_out_i[gen_out_i != -1] # excluding eos and padding indices
gen_out_i_det = gen_out_i[:4]
w, h = image.size
gen_out_i_det[::2] *= w
gen_out_i_det[1::2] *= h
polygons_pred = gen_out_i[4:]
polygons_pred = np.append(polygons_pred, [2])
size = len(polygons_pred)
idx_list = [idx for idx, val in
enumerate(polygons_pred) if val == 2] # 2 indicates separator token
polygons_pred[::2] *= w
polygons_pred[1::2] *= h
if len(idx_list) > 0: # multiple polygons
polygons = []
pred_idx = 0
for idx in idx_list:
cur_idx = idx
if pred_idx == cur_idx or pred_idx == size:
pass
else:
polygons.append(polygons_pred[pred_idx: cur_idx])
pred_idx = cur_idx + 1
else:
polygons = [polygons_pred]
n_poly_pred.append(len(polygons))
hyps.append(polygons)
hyps_det.append(gen_out_i_det)
pred_mask = get_mask_from_codes(hyps[0], (h, w))
pred_overlayed = overlay_predictions(np.asarray(image), pred_mask, hyps[0], hyps_det[0])
return pred_overlayed, np.array(pred_mask*255, dtype=np.uint8)
|