File size: 9,303 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# ------------------------------------------------------------------------
# Modified from OFA (https://github.com/OFA-Sys/OFA)
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.
# ------------------------------------------------------------------------
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

from io import BytesIO

import logging
import warnings

import numpy as np
import torch
import base64
import utils.transforms as T
import math
import os
from PIL import Image, ImageFile

from data import data_utils
from data.base_dataset import BaseDataset
from bert.tokenization_bert import BertTokenizer

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)


class RefcocoPretrainDataset(BaseDataset):
    def __init__(
        self,
        split,
        dataset,
        bpe,
        src_dict,
        tgt_dict=None,
        max_src_length=80,
        max_tgt_length=30,
        patch_image_size=512,
        imagenet_default_mean_and_std=False,
        num_bins=1000,
        max_image_size=512,
        image_path="../../datasets/images"
    ):
        super().__init__(split, dataset, bpe, src_dict, tgt_dict)
        self.max_src_length = max_src_length
        self.max_tgt_length = max_tgt_length
        self.patch_image_size = patch_image_size
        self.num_bins = num_bins
        self.image_path = image_path

        if imagenet_default_mean_and_std:
            mean = IMAGENET_DEFAULT_MEAN
            std = IMAGENET_DEFAULT_STD
        else:
            mean = [0.5, 0.5, 0.5]
            std = [0.5, 0.5, 0.5]

        # for positioning
        self.positioning_transform = T.Compose([
            T.RandomResize([patch_image_size], max_size=patch_image_size),
            T.ToTensor(),
            T.Normalize(mean=mean, std=std, max_image_size=max_image_size)
        ])
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

    def __getitem__(self, index):
        uniq_id, img_file, text, region_coord = self.dataset[index]

        img_path = os.path.join(self.image_path, img_file)
        image = Image.open(img_path).convert("RGB")

        w, h = image.size
        boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
        x0, y0, x1, y1 = region_coord.strip().split(',')
        region = torch.tensor([float(x0), float(y0), float(x1), float(y1)])
        boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
        boxes_target["labels"] = np.array([0])
        boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])

        patch_image, patch_boxes = self.positioning_transform(image, boxes_target)
        resize_h, resize_w = patch_boxes["size"][0], patch_boxes["size"][1]
        patch_mask = torch.tensor([True])

        quant_box = [patch_boxes["boxes"][0][i] * (self.num_bins - 1) for i in range(4)]
        quant_box = np.array(quant_box).reshape(2, 2)

        quant_box11 = [[math.floor(p[0]), math.floor(p[1])] for p in quant_box]
        quant_box21 = [[math.ceil(p[0]), math.floor(p[1])] for p in quant_box]
        quant_box12 = [[math.floor(p[0]), math.ceil(p[1])] for p in quant_box]
        quant_box22 = [[math.ceil(p[0]), math.ceil(p[1])] for p in quant_box]


        # compute linear interpolation coefficient (0 for bos token)
        delta_x1 = torch.tensor([0] + [p[0] - math.floor(p[0]) for p in quant_box])
        delta_y1 = torch.tensor([0] + [p[1] - math.floor(p[1]) for p in quant_box])
        delta_x2 = 1 - delta_x1
        delta_y2 = 1 - delta_y1

        region_coord11 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box11])
        region_coord21 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box21])
        region_coord12 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box12])
        region_coord22 = " ".join([f"<bin_{int(p[0])}_{int(p[1])}>" for p in quant_box22])

        src_caption = self.pre_caption(text, self.max_src_length)

        prompt = ' which region does the text " {} " describe?'.format(src_caption)

        # tgt for input
        tgt_item11 = self.encode_text(region_coord11, use_bpe=False)
        tgt_item12 = self.encode_text(region_coord12, use_bpe=False)
        tgt_item21 = self.encode_text(region_coord21, use_bpe=False)
        tgt_item22 = self.encode_text(region_coord22, use_bpe=False)

        # tgt for output
        tgt_box = torch.reshape(patch_boxes["boxes"][0], (2, 2))
        target_item = torch.cat([tgt_box, torch.tensor([[1, 1]])], dim=0)  # [1, 1] is padding token for eos

        #target_item = torch.cat([tgt_item, self.eos_item])
        prev_output_item11 = torch.cat([self.bos_item, tgt_item11])
        prev_output_item12 = torch.cat([self.bos_item, tgt_item12])
        prev_output_item21 = torch.cat([self.bos_item, tgt_item21])
        prev_output_item22 = torch.cat([self.bos_item, tgt_item22])
        example = {
            "id": uniq_id,
            "source": prompt,
            "patch_image": patch_image,
            "patch_mask": patch_mask,
            "target": target_item,
            "prev_output_tokens_11": prev_output_item11,
            "prev_output_tokens_12": prev_output_item12,
            "prev_output_tokens_21": prev_output_item21,
            "prev_output_tokens_22": prev_output_item22,
            "delta_x1": delta_x1,
            "delta_y1": delta_y1,
            "delta_x2": delta_x2,
            "delta_y2": delta_y2,
            "w_resize_ratio": resize_w / w,
            "h_resize_ratio": resize_h / h,
            "region_coord": region,
            "token_type": torch.tensor([0, 0, 2])
        }
        return example

    def collate(self, samples, pad_idx, eos_idx):
        if len(samples) == 0:
            return {}

        def merge(key):
            return data_utils.collate_tokens(
                [s[key] for s in samples],
                pad_idx,
                eos_idx=eos_idx,
            )

        id = np.array([s["id"] for s in samples])
        captions = [s["source"] for s in samples]
        tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt")
        src_tokens = tokenized["input_ids"]
        att_masks = tokenized["attention_mask"]
        src_lengths = torch.LongTensor(att_masks.ne(0).long().sum())

        patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
        patch_masks = torch.cat([sample['patch_mask'] for sample in samples])

        w_resize_ratios = torch.stack([s["w_resize_ratio"] for s in samples], dim=0)
        h_resize_ratios = torch.stack([s["h_resize_ratio"] for s in samples], dim=0)

        delta_x1 = torch.stack([s["delta_x1"] for s in samples], dim=0)
        delta_y1 = torch.stack([s["delta_y1"] for s in samples], dim=0)
        delta_x2 = torch.stack([s["delta_x2"] for s in samples], dim=0)
        delta_y2 = torch.stack([s["delta_y2"] for s in samples], dim=0)

        region_coords = torch.stack([s['region_coord'] for s in samples], dim=0)

        target = merge("target")
        tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
        ntokens = tgt_lengths.sum().item()

        prev_output_tokens_11 = merge("prev_output_tokens_11")
        prev_output_tokens_12 = merge("prev_output_tokens_12")
        prev_output_tokens_21 = merge("prev_output_tokens_21")
        prev_output_tokens_22 = merge("prev_output_tokens_22")

        token_type = merge("token_type")

        batch = {
            "id": id,
            "nsentences": len(samples),
            "ntokens": ntokens,
            "net_input": {
                "src_tokens": src_tokens,
                "src_lengths": src_lengths,
                "att_masks": att_masks,
                "patch_images": patch_images,
                "patch_masks": patch_masks,
                "prev_output_tokens_11": prev_output_tokens_11,
                "prev_output_tokens_12": prev_output_tokens_12,
                "prev_output_tokens_21": prev_output_tokens_21,
                "prev_output_tokens_22": prev_output_tokens_22,
                "delta_x1": delta_x1,
                "delta_y1": delta_y1,
                "delta_x2": delta_x2,
                "delta_y2": delta_y2
            },
            "target": target,
            "token_type": token_type,
            "w_resize_ratios": w_resize_ratios,
            "h_resize_ratios": h_resize_ratios,
            "region_coords": region_coords
        }

        return batch

    def collater(self, samples, pad_to_length=None):
        """Merge a list of samples to form a mini-batch.
        Args:
            samples (List[dict]): samples to collate
        Returns:
            dict: a mini-batch containing the data of the task
        """
        return self.collate(samples, pad_idx=self.pad, eos_idx=self.eos)