File size: 19,687 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#!/usr/bin/env python3 -u
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.

"""
Train a new model on one or across multiple GPUs.
"""

import argparse
import logging
import math
import os
import sys
from typing import Dict, Optional, Any, List, Tuple, Callable

# We need to setup root logger before importing any fairseq libraries.
logging.basicConfig(
    format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s',
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.train")

import numpy as np
import torch
from fairseq import (
    # checkpoint_utils,
    options,
    quantization_utils,
    tasks,
    utils,
)
from fairseq.data import iterators
from fairseq.data.plasma_utils import PlasmaStore
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap, utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics, progress_bar
from fairseq.model_parallel.megatron_trainer import MegatronTrainer
# from fairseq.trainer import Trainer
from omegaconf import DictConfig, OmegaConf

from utils import checkpoint_utils
from trainer import Trainer


def main(cfg: FairseqConfig) -> None:
    if isinstance(cfg, argparse.Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    if distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg:
        # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
        logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))

    assert (
        cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"
    metrics.reset()

    if cfg.common.log_file is not None:
        handler = logging.FileHandler(filename=cfg.common.log_file)
        logger.addHandler(handler)

    np.random.seed(cfg.common.seed)
    utils.set_torch_seed(cfg.common.seed)

    if distributed_utils.is_master(cfg.distributed_training):
        checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)

    # Print args
    logger.info(cfg)

    if cfg.checkpoint.write_checkpoints_asynchronously:
        try:
            import iopath  # noqa: F401
        except ImportError:
            logging.exception(
                "Asynchronous checkpoint writing is specified but iopath is "
                "not installed: `pip install iopath`"
            )
            return

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(cfg.task)

    assert cfg.criterion, "Please specify criterion to train a model"

    # Build model and criterion
    if cfg.distributed_training.ddp_backend == "fully_sharded":
        with fsdp_enable_wrap(cfg.distributed_training):
            model = fsdp_wrap(task.build_model(cfg.model))
    else:
        model = task.build_model(cfg.model)
    criterion = task.build_criterion(cfg.criterion)
    logger.info(model)
    logger.info("task: {}".format(task.__class__.__name__))
    logger.info("model: {}".format(model.__class__.__name__))
    logger.info("criterion: {}".format(criterion.__class__.__name__))
    logger.info(
        "num. shared model params: {:,} (num. trained: {:,})".format(
            sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False)),
            sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False) and p.requires_grad)
        )
    )

    logger.info(
        "num. expert model params: {} (num. trained: {})".format(
            sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
            sum(p.numel() for p in model.parameters() if getattr(p, "expert", False) and p.requires_grad),
        )
    )

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    # We load the valid dataset AFTER building the model
    # data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg)
    if cfg.dataset.combine_valid_subsets:
        task.load_dataset("valid", combine=True, epoch=1)
    else:
        for valid_sub_split in cfg.dataset.valid_subset.split(","):
            task.load_dataset(valid_sub_split, combine=False, epoch=1)

    # (optionally) Configure quantization
    if cfg.common.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=cfg.common.quantization_config_path,
            max_epoch=cfg.optimization.max_epoch,
            max_update=cfg.optimization.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if cfg.common.model_parallel_size == 1:
        trainer = Trainer(cfg, task, model, criterion, quantizer)
    else:
        trainer = MegatronTrainer(cfg, task, model, criterion)
    logger.info(
        "training on {} devices (GPUs/TPUs)".format(
            cfg.distributed_training.distributed_world_size
        )
    )
    logger.info(
        "max tokens per device = {} and max sentences per device = {}".format(
            cfg.dataset.max_tokens,
            cfg.dataset.batch_size,
        )
    )

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
        cfg.checkpoint,
        trainer,
        # don't cache epoch iterators for sharded datasets
        disable_iterator_cache=True,
    )
    if cfg.common.tpu:
        import torch_xla.core.xla_model as xm
        xm.rendezvous("load_checkpoint")  # wait for all workers

    max_epoch = cfg.optimization.max_epoch or math.inf
    if max_epoch > 0 and max_epoch != math.inf:
        total_num_updates = sum(
            math.ceil(len(epoch_itr) / cfg.optimization.update_freq[i])
            if i < len(cfg.optimization.update_freq) else
            math.ceil(len(epoch_itr) / cfg.optimization.update_freq[-1])
            for i in range(max_epoch)
        )
        trainer.lr_reinit(total_num_updates, trainer.get_num_updates())
    lr = trainer.get_lr()

    train_meter = meters.StopwatchMeter()
    train_meter.start()
    while epoch_itr.next_epoch_idx <= max_epoch:
        if lr <= cfg.optimization.stop_min_lr:
            logger.info(
                f"stopping training because current learning rate ({lr}) is smaller "
                "than or equal to minimum learning rate "
                f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
            )
            break

        # train for one epoch
        valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, 0)
        #lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=True,
            # don't cache epoch iterators for sharded datasets
            disable_iterator_cache=True,
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))

    # ioPath implementation to wait for all asynchronous file writes to complete.
    if cfg.checkpoint.write_checkpoints_asynchronously:
        logger.info(
            "ioPath PathManager waiting for all asynchronous checkpoint "
            "writes to finish."
        )
        PathManager.async_close()
        logger.info("ioPath PathManager finished waiting.")


def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool:
    # skip check if no validation was done in the current epoch
    if valid_loss is None:
        return False
    if cfg.checkpoint.patience <= 0:
        return False

    def is_better(a, b):
        return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b

    prev_best = getattr(should_stop_early, "best", None)
    if prev_best is None or is_better(valid_loss, prev_best):
        should_stop_early.best = valid_loss
        should_stop_early.num_runs = 0
        return False
    else:
        should_stop_early.num_runs += 1
        if should_stop_early.num_runs >= cfg.checkpoint.patience:
            logger.info(
                "early stop since valid performance hasn't improved for last {} runs".format(
                    cfg.checkpoint.patience
                )
            )
            return True
        else:
            return False


@metrics.aggregate("train")
def train(
    cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr
) -> Tuple[List[Optional[float]], bool]:
    """Train the model for one epoch and return validation losses."""
    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus,
        shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum),
    )
    update_freq = (
        cfg.optimization.update_freq[epoch_itr.epoch - 1]
        if epoch_itr.epoch <= len(cfg.optimization.update_freq)
        else cfg.optimization.update_freq[-1]
    )
    itr = iterators.GroupedIterator(itr, update_freq)
    if cfg.common.tpu:
        itr = utils.tpu_data_loader(itr)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_file=cfg.common.log_file,
        log_interval=cfg.common.log_interval,
        epoch=epoch_itr.epoch,
        tensorboard_logdir=(
            cfg.common.tensorboard_logdir
            if distributed_utils.is_master(cfg.distributed_training)
            else None
        ),
        default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
        wandb_project=(
            cfg.common.wandb_project
            if distributed_utils.is_master(cfg.distributed_training)
            else None
        ),
        wandb_run_name=os.environ.get(
            "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
        ),
        azureml_logging=(
            cfg.common.azureml_logging
            if distributed_utils.is_master(cfg.distributed_training)
            else False
        ),
    )
    progress.update_config(_flatten_config(cfg))

    trainer.begin_epoch(epoch_itr.epoch)

    valid_subsets = cfg.dataset.valid_subset.split(",")
    should_stop = False
    num_updates = trainer.get_num_updates()
    logger.info("Start iterating over samples")
    for i, samples in enumerate(progress):
        with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function(
            "train_step-%d" % i
        ):
            log_output = trainer.train_step(samples)

        if log_output is not None:  # not OOM, overflow, ...
            # log mid-epoch stats
            num_updates = trainer.get_num_updates()
            if num_updates % cfg.common.log_interval == 0:
                stats = get_training_stats(metrics.get_smoothed_values("train_inner"))
                progress.log(stats, tag="train_inner", step=num_updates)

                # reset mid-epoch stats after each log interval
                # the end-of-epoch stats will still be preserved
                metrics.reset_meters("train_inner")

        end_of_epoch = not itr.has_next()

        if task.cfg._name == 'refcoco_pretrain':
            valid_losses, should_stop = validate_and_save(
                cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch
            )
        else:
            # skip validation during training in fine-tuning stage
            valid_losses = 0
            should_stop = False
        if should_stop:
            break

    checkpoint_utils.save_checkpoint(
        cfg.checkpoint, trainer, epoch_itr, 0
    )
    if task.cfg._name == 'refcoco':
        cmd = f'cp {cfg.checkpoint.save_dir}/checkpoint_last.pt {cfg.checkpoint.save_dir}/checkpoint_epoch_{epoch_itr.epoch}.pt'
        print(cmd)
        os.system(cmd)
    # log end-of-epoch stats
    logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch))
    stats = get_training_stats(metrics.get_smoothed_values("train"))
    progress.print(stats, tag="train", step=num_updates)

    # reset epoch-level meters
    metrics.reset_meters("train")
    return valid_losses, should_stop


def _flatten_config(cfg: DictConfig):
    config = OmegaConf.to_container(cfg)
    # remove any legacy Namespaces and replace with a single "args"
    namespace = None
    for k, v in list(config.items()):
        if isinstance(v, argparse.Namespace):
            namespace = v
            del config[k]
    if namespace is not None:
        config["args"] = vars(namespace)
    return config


def validate_and_save(
    cfg: DictConfig,
    trainer: Trainer,
    task: tasks.FairseqTask,
    epoch_itr,
    valid_subsets: List[str],
    end_of_epoch: bool,
) -> Tuple[List[Optional[float]], bool]:
    num_updates = trainer.get_num_updates()
    max_update = cfg.optimization.max_update or math.inf

    # Stopping conditions (and an additional one based on validation loss later
    # on)
    should_stop = False
    if num_updates >= max_update:
        should_stop = True
        logger.info(
            f"Stopping training due to "
            f"num_updates: {num_updates} >= max_update: {max_update}"
        )

    training_time_hours = trainer.cumulative_training_time() / (60 * 60)
    if (
        cfg.optimization.stop_time_hours > 0
        and training_time_hours > cfg.optimization.stop_time_hours
    ):
        should_stop = True
        logger.info(
            f"Stopping training due to "
            f"cumulative_training_time: {training_time_hours} > "
            f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)"
        )

    do_save = (
        (end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0)
        or should_stop
        or (
            cfg.checkpoint.save_interval_updates > 0
            and num_updates > 0
            and num_updates % cfg.checkpoint.save_interval_updates == 0
            and num_updates >= cfg.dataset.validate_after_updates
        )
    )
    do_validate = (
        (not end_of_epoch and do_save)  # validate during mid-epoch saves
        or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0)
        or should_stop
        or (
            cfg.dataset.validate_interval_updates > 0
            and num_updates > 0
            and num_updates % cfg.dataset.validate_interval_updates == 0
        )
    ) and not cfg.dataset.disable_validation and num_updates >= cfg.dataset.validate_after_updates

    # Validate
    valid_losses = [None]
    if do_validate:
        valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets)

    should_stop |= should_stop_early(cfg, valid_losses[0])

    # Save checkpoint
    if do_save or should_stop:
        checkpoint_utils.save_checkpoint(
            cfg.checkpoint, trainer, epoch_itr, valid_losses[0]
        )

    return valid_losses, should_stop


def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]:
    stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0)
    return stats


def validate(
    cfg: DictConfig,
    trainer: Trainer,
    task: tasks.FairseqTask,
    epoch_itr,
    subsets: List[str],
) -> List[Optional[float]]:
    """Evaluate the model on the validation set(s) and return the losses."""

    if cfg.dataset.fixed_validation_seed is not None:
        # set fixed seed for every validation
        utils.set_torch_seed(cfg.dataset.fixed_validation_seed)

    trainer.begin_valid_epoch(epoch_itr.epoch)
    valid_losses = []
    for subset in subsets:
        logger.info('begin validation on "{}" subset'.format(subset))

        # Initialize data iterator
        itr = trainer.get_valid_iterator(subset).next_epoch_itr(
            shuffle=False, set_dataset_epoch=False  # use a fixed valid set
        )
        if cfg.common.tpu:
            itr = utils.tpu_data_loader(itr)
        progress = progress_bar.progress_bar(
            itr,
            log_format=cfg.common.log_format,
            log_interval=cfg.common.log_interval,
            epoch=epoch_itr.epoch,
            prefix=f"valid on '{subset}' subset",
            tensorboard_logdir=(
                cfg.common.tensorboard_logdir
                if distributed_utils.is_master(cfg.distributed_training)
                else None
            ),
            default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
            wandb_project=(
                cfg.common.wandb_project
                if distributed_utils.is_master(cfg.distributed_training)
                else None
            ),
            wandb_run_name=os.environ.get(
                "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
            ),
        )

        # create a new root metrics aggregator so validation metrics
        # don't pollute other aggregators (e.g., train meters)
        with metrics.aggregate(new_root=True) as agg:
            for i, sample in enumerate(progress):
                if cfg.dataset.max_valid_steps is not None and i > cfg.dataset.max_valid_steps:
                    break
                trainer.valid_step(sample)

        # log validation stats
        if hasattr(task, 'get_valid_stats'):
            stats = task.get_valid_stats(cfg, trainer, agg.get_smoothed_values())
        else:
            stats = agg.get_smoothed_values()
        stats = get_valid_stats(cfg, trainer, stats)

        if hasattr(task, "post_validate"):
            task.post_validate(trainer.get_model(), stats, agg)

        progress.print(stats, tag=subset, step=trainer.get_num_updates())

        valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric])
    return valid_losses


def get_valid_stats(
    cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any]
) -> Dict[str, Any]:
    stats["num_updates"] = trainer.get_num_updates()
    if hasattr(checkpoint_utils.save_checkpoint, "best"):
        key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric)
        best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min
        stats[key] = best_function(
            checkpoint_utils.save_checkpoint.best,
            stats[cfg.checkpoint.best_checkpoint_metric],
        )
    return stats


def cli_main(
    modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
    parser = options.get_training_parser()
    parser.add_argument("--det_weight", type=float, default=1.0)
    parser.add_argument("--cls_weight", type=float, default=1.0)
    args = options.parse_args_and_arch(parser, modify_parser=modify_parser)

    cfg = convert_namespace_to_omegaconf(args)

    if cfg.common.use_plasma_view:
        server = PlasmaStore(path=cfg.common.plasma_path)
        logger.info(f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}")

    if args.profile:
        with torch.cuda.profiler.profile():
            with torch.autograd.profiler.emit_nvtx():
                distributed_utils.call_main(cfg, main)
    else:
        distributed_utils.call_main(cfg, main)

    # if cfg.common.use_plasma_view:
    #     server.server.kill()


if __name__ == "__main__":
    cli_main()