Spaces:
Running
Running
File size: 19,039 Bytes
650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""
import copy
import json
import logging
import os
from typing import Dict, Tuple
from .file_utils import CONFIG_NAME, cached_path, hf_bucket_url, is_remote_url
logger = logging.getLogger(__name__)
class PretrainedConfig(object):
r""" Base class for all configuration classes.
Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.
Note:
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
It only affects the model's configuration.
Class attributes (overridden by derived classes):
- ``model_type``: a string that identifies the model type, that we serialize into the JSON file, and that we use to recreate the correct object in :class:`~transformers.AutoConfig`.
Args:
finetuning_task (:obj:`string` or :obj:`None`, `optional`, defaults to :obj:`None`):
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
num_labels (:obj:`int`, `optional`, defaults to `2`):
Number of classes to use when the model is a classification model (sequences/tokens)
output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`):
Should the model returns all hidden-states.
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`):
Should the model returns all attentions.
torchscript (:obj:`bool`, `optional`, defaults to :obj:`False`):
Is the model used with Torchscript (for PyTorch models).
"""
model_type: str = ""
def __init__(self, **kwargs):
# Attributes with defaults
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
self.output_attentions = kwargs.pop("output_attentions", False)
self.use_cache = kwargs.pop("use_cache", True) # Not used by all models
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
self.pruned_heads = kwargs.pop("pruned_heads", {})
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
self.is_decoder = kwargs.pop("is_decoder", False)
# Parameters for sequence generation
self.max_length = kwargs.pop("max_length", 20)
self.min_length = kwargs.pop("min_length", 0)
self.do_sample = kwargs.pop("do_sample", False)
self.early_stopping = kwargs.pop("early_stopping", False)
self.num_beams = kwargs.pop("num_beams", 1)
self.temperature = kwargs.pop("temperature", 1.0)
self.top_k = kwargs.pop("top_k", 50)
self.top_p = kwargs.pop("top_p", 1.0)
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
self.length_penalty = kwargs.pop("length_penalty", 1.0)
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
# Fine-tuning task arguments
self.architectures = kwargs.pop("architectures", None)
self.finetuning_task = kwargs.pop("finetuning_task", None)
self.id2label = kwargs.pop("id2label", None)
self.label2id = kwargs.pop("label2id", None)
if self.id2label is not None:
kwargs.pop("num_labels", None)
self.id2label = dict((int(key), value) for key, value in self.id2label.items())
# Keys are always strings in JSON so convert ids to int here.
else:
self.num_labels = kwargs.pop("num_labels", 2)
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
self.prefix = kwargs.pop("prefix", None)
self.bos_token_id = kwargs.pop("bos_token_id", None)
self.pad_token_id = kwargs.pop("pad_token_id", None)
self.eos_token_id = kwargs.pop("eos_token_id", None)
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
# task specific arguments
self.task_specific_params = kwargs.pop("task_specific_params", None)
# TPU arguments
self.xla_device = kwargs.pop("xla_device", None)
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error("Can't set {} with value {} for {}".format(key, value, self))
raise err
@property
def num_labels(self):
return len(self.id2label)
@num_labels.setter
def num_labels(self, num_labels):
self.id2label = {i: "LABEL_{}".format(i) for i in range(num_labels)}
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
def save_pretrained(self, save_directory):
"""
Save a configuration object to the directory `save_directory`, so that it
can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method.
Args:
save_directory (:obj:`string`):
Directory where the configuration JSON file will be saved.
"""
if os.path.isfile(save_directory):
raise AssertionError("Provided path ({}) should be a directory, not a file".format(save_directory))
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file, use_diff=True)
logger.info("Configuration saved in {}".format(output_config_file))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
r"""
Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
Args:
pretrained_model_name_or_path (:obj:`string`):
either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or
download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to
our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a configuration file saved using the
:func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.:
``./my_model_directory/configuration.json``.
cache_dir (:obj:`string`, `optional`):
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
kwargs (:obj:`Dict[str, any]`, `optional`):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is
controlled by the `return_unused_kwargs` keyword parameter.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Force to (re-)download the model weights and configuration files and override the cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies (:obj:`Dict`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g.:
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.`
The proxies are used on each request.
return_unused_kwargs: (`optional`) bool:
If False, then this function returns just the final configuration object.
If True, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part
of kwargs which has not been used to update `config` and is otherwise ignored.
Returns:
:class:`PretrainedConfig`: An instance of a configuration object
Examples::
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
"""
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_dict(config_dict, **kwargs)
@classmethod
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs) -> Tuple[Dict, Dict]:
"""
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used
for instantiating a Config using `from_dict`.
Parameters:
pretrained_model_name_or_path (:obj:`string`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
:obj:`Tuple[Dict, Dict]`: The dictionary that will be used to instantiate the configuration object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
config_dict = cls._dict_from_json_file(resolved_config_file)
except EnvironmentError:
msg = (
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
)
raise EnvironmentError(msg)
except json.JSONDecodeError:
msg = (
"Couldn't reach server at '{}' to download configuration file or "
"configuration file is not a valid JSON file. "
"Please check network or file content here: {}.".format(config_file, resolved_config_file)
)
raise EnvironmentError(msg)
if resolved_config_file == config_file:
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading configuration file {} from cache at {}".format(config_file, resolved_config_file))
return config_dict, kwargs
@classmethod
def from_dict(cls, config_dict: Dict, **kwargs) -> "PretrainedConfig":
"""
Constructs a `Config` from a Python dictionary of parameters.
Args:
config_dict (:obj:`Dict[str, any]`):
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved
from a pre-trained checkpoint by leveraging the :func:`~transformers.PretrainedConfig.get_config_dict`
method.
kwargs (:obj:`Dict[str, any]`):
Additional parameters from which to initialize the configuration object.
Returns:
:class:`PretrainedConfig`: An instance of a configuration object
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
config = cls(**config_dict)
if hasattr(config, "pruned_heads"):
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info("Model config %s", str(config))
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def from_json_file(cls, json_file: str) -> "PretrainedConfig":
"""
Constructs a `Config` from the path to a json file of parameters.
Args:
json_file (:obj:`string`):
Path to the JSON file containing the parameters.
Returns:
:class:`PretrainedConfig`: An instance of a configuration object
"""
config_dict = cls._dict_from_json_file(json_file)
return cls(**config_dict)
@classmethod
def _dict_from_json_file(cls, json_file: str):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __repr__(self):
return "{} {}".format(self.__class__.__name__, self.to_json_string())
def to_diff_dict(self):
"""
Removes all attributes from config which correspond to the default
config attributes for better readability and serializes to a Python
dictionary.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
config_dict = self.to_dict()
# get the default config dict
default_config_dict = PretrainedConfig().to_dict()
serializable_config_dict = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if key not in default_config_dict or value != default_config_dict[key]:
serializable_config_dict[key] = value
return serializable_config_dict
def to_dict(self):
"""
Serializes this instance to a Python dictionary.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
if hasattr(self.__class__, "model_type"):
output["model_type"] = self.__class__.model_type
return output
def to_json_string(self, use_diff=True):
"""
Serializes this instance to a JSON string.
Args:
use_diff (:obj:`bool`):
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON string.
Returns:
:obj:`string`: String containing all the attributes that make up this configuration instance in JSON format.
"""
if use_diff is True:
config_dict = self.to_diff_dict()
else:
config_dict = self.to_dict()
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path, use_diff=True):
"""
Save this instance to a json file.
Args:
json_file_path (:obj:`string`):
Path to the JSON file in which this configuration instance's parameters will be saved.
use_diff (:obj:`bool`):
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON file.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string(use_diff=use_diff))
def update(self, config_dict: Dict):
"""
Updates attributes of this class
with attributes from `config_dict`.
Args:
:obj:`Dict[str, any]`: Dictionary of attributes that shall be updated for this class.
"""
for key, value in config_dict.items():
setattr(self, key, value)
|