File size: 12,671 Bytes
aa7d0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a21f829
 
 
 
 
 
 
 
 
 
 
 
 
 
aa7d0f8
 
 
 
 
 
 
a21f829
aa7d0f8
 
 
 
 
 
 
 
 
 
c939394
aa7d0f8
 
 
 
 
a21f829
 
 
aa7d0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a21f829
442eee8
8e8d000
aa7d0f8
 
 
 
 
 
 
 
442eee8
aa7d0f8
 
63f9be8
368412e
aa7d0f8
 
 
 
442eee8
 
 
 
 
 
aa7d0f8
442eee8
17ebf2e
442eee8
aa7d0f8
 
a21f829
442eee8
aa7d0f8
e6166c0
 
aa7d0f8
 
 
e01f6e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
# import scipy.io.matlab
import numpy as np
import matplotlib.pyplot as plt
import librosa as lb
import soundfile as sf
import sys
import pickle
import tensorflow as tf
from tensorflow.keras import Input,Model
from tensorflow.keras.layers import Dense,Dropout,Bidirectional,LSTM
import torch
import wave
import gradio as gr
from pydub import AudioSegment

torch.set_num_threads(1)

FRAME_TIME=80*10**(-3) # to try 60ms, 80ms,100ms, 110, 120,
HOP_TIME=10*10**(-3)
S_FRAME_TIME=10*10**(-3) # changed from 20ms to 32 ms to adjust FFT length
S_HOP_TIME=4.1*10**(-3) # 4.5for 80ms,4 for 100ms, 4 for 110ms,4.1 for 120
THRESHOLD_TIME=FRAME_TIME
SAMPLING_RATE=16000
N_MFCC=20
BREATH_THRESHOLD=100*10**(-3)
BREATH_TO_BREATH_TIME=150*10**(-3)
VAD_THRESHOLD=0.1
join=0
remove=1
classifier_threshold=0.5
# Specify the path to your pickle file
pickle_file_path = 'Normalisation_parameters_2018_full_data.pickle'
ModelWeightFilepath='Breath_detection_3BILSTM_2018_full_data_80ms_10ms_10ms_best_weights.hdf5'
# global model, utils, original_task_model, get_speech_timestamps, read_audio, Feature_mean, Feature_std
# ***********************************************
# Initialisation
# ***********************************************
print("Reading normalisation parameters")
try:
    # Open the file in binary read mode
    with open(pickle_file_path, 'rb') as file:
        # Load the object from the file
        Feature_mean,Feature_std = pickle.load(file)
    print("Object loaded successfully!")
    print(Feature_mean.shape,Feature_std.shape)
except Exception as e:
    print(f"An error occurred: {e}")

print("Initialising the Breath Detection model")
lstm_1= 24
l2_1= 0.02
drop_1= 0.25
lstm_2= 8
l2_2= 0.04
drop_2= 0.3
lstm_3= 24
l2_3= 0.03
drop_3= 0.45
lr= 0.0001

input = Input(shape=Feature_mean.shape)
# print(input.shape)
lay1=Bidirectional(LSTM(lstm_1,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_1),
                        return_sequences=True))(input)
lay1=Dropout(drop_1)(lay1)
# print(lay1.shape)

lay2=Bidirectional(LSTM(lstm_2,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_2),
                        return_sequences=True))(lay1)
lay2=Dropout(drop_2)(lay2)
# print(lay2.shape)

lay3=Bidirectional(LSTM(lstm_3,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_3),
                        return_sequences=False))(lay2)
lay3=Dropout(drop_3)(lay3)
# print(lay3.shape)

output=Dense(1,activation='sigmoid')(lay3)
# print(output.shape)
original_task_model=Model(inputs=input,outputs=output,name='BILSTM_model')
# original_task_model.summary()
original_task_model.load_weights(ModelWeightFilepath)

print("Initialising Voice Activity Detection Model")
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
                            model='silero_vad',
                            force_reload=True)

(get_speech_timestamps,_, read_audio,*_) = utils 

def speech_feature_melspect(speech_seg,Fs,frame_length,hop_length,s_frame_length,s_hop_length):
    Feat=[]
    Feature_min=[]
    Feature_max=[]
    index_start=0;
    index_end=frame_length;
    fft_length=int(2**np.ceil(np.log(int(s_frame_length))/np.log(2)))
    speech_seg = lb.effects.preemphasis(speech_seg)
    while index_end<len(speech_seg):
        s_frame=speech_seg[range(index_start,index_end)]
        cepst=lb.feature.melspectrogram(y=s_frame.reshape((-1,)),sr=Fs,n_fft=fft_length,win_length=s_frame_length,
                                        hop_length=s_hop_length,window='hann',n_mels=60,power=1)
        cepst=lb.power_to_db(cepst, ref=np.max)
        Feat.append(cepst)
        index_start += hop_length;
        index_end += hop_length;    
    Feat=np.array(Feat)
    return Feat

def read_speech_derive_vad (speech_file_path,sampling_rate,original_task_model,Feature_mean,Feature_std):  
     
    # sampling_rate = SAMPLING_RATE # also accepts 8000
    wav = read_audio(speech_file_path, sampling_rate=SAMPLING_RATE)
    # get speech timestamps from full audio file
    speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=sampling_rate)
    index_vad = []
    for item in speech_timestamps:
        index_vad.extend([item['start'],item['end']])
    if index_vad[0] != 0:
        index_vad = [0] + index_vad
    if index_vad[-1] != len(wav):
        index_vad.append(len(wav))
    else:
        index_vad = index_vad[:-1]       
    index_vad = np.array(index_vad)
    speech,Fs=lb.load(speech_file_path,sr=sampling_rate)
    speech_scaled=speech/max(abs(speech))
    return speech,speech_scaled,index_vad

def remove_small_breaths(index_b,threshold_breath,speech_b_detect):
    for i in range(int(np.size(index_b)/2)):
        b_length=index_b[0,2*i+1]-index_b[0,2*i]
        if b_length <= threshold_breath:
            speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=0
     
    index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
    if speech_b_detect[0]==1:
        index_b=np.insert(index_b,0,0)
    
    if speech_b_detect[-1]==1:
        index_b=np.append(index_b,len(speech_b_detect))
    index_b=np.reshape(index_b,(1,-1))
    
    return index_b,speech_b_detect
                   
def join_close_breaths(index_b,threshold_breath_to_breath,speech_b_detect):
    for i in range(int(np.size(index_b)/2)-1):
        bb_length=index_b[0,2*i+2]-index_b[0,2*i+1]
        if bb_length <= threshold_breath_to_breath:
            speech_b_detect[range(int(index_b[0,2*i+1]),int(index_b[0,2*i+2])+1)]=1
     
    index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
    if speech_b_detect[0]==1:
        index_b=np.insert(index_b,0,0)
    
    if speech_b_detect[-1]==1:
        index_b=np.append(index_b,len(speech_b_detect))
    index_b=np.reshape(index_b,(1,-1))
    frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
    hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
    offset = frame_length - hop_length
    for i in range(int(np.size(index_b)/2)):
        index_b[2*i+1] = index_b[2*i+1] + offset
        speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=1
    
    return index_b,speech_b_detect

# ***********************************************
def detect_breath_from_speed_vad(speech,index_vad):
    index_vad=np.reshape(index_vad,(1,-1))
    
    frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
    hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
    s_frame_length=int(np.floor(S_FRAME_TIME*SAMPLING_RATE))
    s_hop_length=int(np.floor(S_HOP_TIME*SAMPLING_RATE))

    speech_b_detect=np.zeros(np.size(speech))
    
    for vi in range(int(np.size(index_vad)/2)):        
        index_start=index_vad[0,2*vi]
        index_end=index_vad[0,2*vi+1]
        speech_seg=speech[index_start:index_end]
        if (len(speech_seg)> frame_length+1):
            feature=speech_feature_melspect(speech_seg, SAMPLING_RATE,
                                            frame_length, hop_length,
                                            s_frame_length, s_hop_length)
            feature=(feature-Feature_mean)/Feature_std
            prediction=original_task_model.predict(feature)
            y_pred=np.array(list(map(int,prediction>classifier_threshold)))
            if sum(y_pred)>2:
                detect_point=np.argwhere(y_pred==1)
                speech_b_detect[int(index_start+detect_point[0]*hop_length):int(index_start+(detect_point[-1]+1)*hop_length)]=1

    index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
    if speech_b_detect[0]==1:
        index_b=np.insert(index_b,0,0)
        
    if speech_b_detect[-1]==1:
        index_b=np.append(index_b,len(speech_b_detect))
    index_b=np.reshape(index_b,(1,-1))
    index_b1=index_b.copy()
    threshold_breath=BREATH_THRESHOLD*SAMPLING_RATE
    threshold_breath_to_breath=BREATH_TO_BREATH_TIME*SAMPLING_RATE

    frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
    hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
    offset = frame_length - hop_length
    print(f"Number of breaths detected: {np.size(index_b)/2}")
    for i in range(int(np.size(index_b)/2)):
        index_b[0,2*i+1] = index_b[0,2*i+1] + offset
        if (index_b[0,2*i+1] > len(speech)):
            index_b[0,2*i+1]=len(speech)
        speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=1
    
    # if join==1:
    #     index_b,speech_b_detect=join_close_breaths(index_b,threshold_breath_to_breath,speech_b_detect)
    # if remove==1:
    #     index_b,speech_b_detect=remove_small_breaths(index_b,threshold_breath,speech_b_detect)
    
   
    return speech_b_detect

def detect_breath_from_speed(speech_file_path,original_task_model,Feature_mean,Feature_std):
    print("Finding Voice Activity Deteciton")
    speech,speech_scaled,index_vad=read_speech_derive_vad(speech_file_path,SAMPLING_RATE,original_task_model,Feature_mean,Feature_std)
    print(f"Number of Non-Voice regions: {len(index_vad)/2}")
    print("Detecting Breath sound in speech")
    speech_b_detect=detect_breath_from_speed_vad(speech,index_vad)
    return speech,speech_b_detect

def plot_waveform(speech,SAMPLING_RATE,speech_b_detect):
    # Read the audio file
    # Create the X values based on the length of the speech data and the sampling rate
    X = np.divide(range(0, len(speech)), SAMPLING_RATE)

    # Create a figure
    plt.figure(figsize=(8, 3))

    # Define font size
    font_size = 24

    # Second subplot: Speech, Detected breath, and True breath
    # plt.subplot(3, 1, 2)
    plt.plot(X, 0.5*speech, label="Speech", color='blue', linewidth=2)
    plt.plot(X, 0.2 * speech_b_detect, label="Detected breath", color='red', linewidth=3)
    plt.title(f"Speech and detected breaths", fontsize=24)
    plt.legend(fontsize=12)
    plt.xlabel("Time (seconds)", fontsize=20)
    plt.ylabel("Amplitude", fontsize=20)
    plt.grid(True)
    
    # Save to a file
    output_image_file = "waveform.png"
    plt.savefig(output_image_file)
    plt.close()
        
    return output_image_file
# if __name__ == "__main__":
#     speech_file_path = 'DATA\Introductory\C1W1L01.wav'
    # original_task_model,Feature_mean,Feature_std = initialisation()
    

# def gradio_interface(image_file,input_audio_file):
def gradio_interface(text,input_audio_file):
    print("Gradio Interface audio file:",input_audio_file)
    # Load the audio file
    audio = AudioSegment.from_file(input_audio_file)    
    # Process the audio (e.g., normalize)
    processed_audio = audio.normalize()    
    # Export the processed audio to a file
    speech_file_path = "input_audio.wav"
    processed_audio.export(speech_file_path, format="wav")
    speech,speech_b_detect = detect_breath_from_speed(speech_file_path,original_task_model,Feature_mean,Feature_std)
    breath_output = 10*np.multiply(speech,speech_b_detect)
    breath_enhanced_speech = speech + breath_output
    print("Writing output file")
    output_audio_file = "Breath_v1.wav"
    print(f"Output file path : {output_audio_file}")
    sf.write(output_audio_file, breath_enhanced_speech, samplerate= SAMPLING_RATE,format='WAV')
    output_image_file = plot_waveform(speech,SAMPLING_RATE,speech_b_detect)
    return output_image_file,output_audio_file

# Example speech links for download
example_links = """
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/C1W1L01_half.wav" download>Download Example Speech 1</a><br>
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/aljazeera_only_report.wav" download>Download Example Speech 2</a><br>
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/nz_pm_speech.wav" download>Download Example Speech 3</a>
"""
# Create the Gradio interface
# default_image = "Text.png"
examples=gr.Markdown(f"Upload a speech audio file to process. Please record the voice in a noise less environment with a good mic near to your mouth and nose. You can also download example speeches below.\n{example_links}")
audio_input = gr.Audio(sources="upload", type="filepath", label="Upload your speech file")
iface = gr.Interface(
    fn=gradio_interface,
    # inputs=[gr.Image(type="filepath", value=default_image,interactive=False),gr.Audio(sources=["microphone","upload"], type="filepath",format='wav')],
    inputs=[examples,audio_input],
    outputs=[gr.Image(type="filepath"),gr.Audio(type="filepath")],
    title="Breath Sound Detector",
    description="Upload the speech file. The audio will be processed and the breath detection will be performed. The detected breath will be displayed in the image and the breath enhanced speech can be heard.",
)

# Launch the Gradio interface
iface.launch()