Spaces:
Runtime error
Runtime error
File size: 12,671 Bytes
aa7d0f8 a21f829 aa7d0f8 a21f829 aa7d0f8 c939394 aa7d0f8 a21f829 aa7d0f8 a21f829 442eee8 8e8d000 aa7d0f8 442eee8 aa7d0f8 63f9be8 368412e aa7d0f8 442eee8 aa7d0f8 442eee8 17ebf2e 442eee8 aa7d0f8 a21f829 442eee8 aa7d0f8 e6166c0 aa7d0f8 e01f6e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
# import scipy.io.matlab
import numpy as np
import matplotlib.pyplot as plt
import librosa as lb
import soundfile as sf
import sys
import pickle
import tensorflow as tf
from tensorflow.keras import Input,Model
from tensorflow.keras.layers import Dense,Dropout,Bidirectional,LSTM
import torch
import wave
import gradio as gr
from pydub import AudioSegment
torch.set_num_threads(1)
FRAME_TIME=80*10**(-3) # to try 60ms, 80ms,100ms, 110, 120,
HOP_TIME=10*10**(-3)
S_FRAME_TIME=10*10**(-3) # changed from 20ms to 32 ms to adjust FFT length
S_HOP_TIME=4.1*10**(-3) # 4.5for 80ms,4 for 100ms, 4 for 110ms,4.1 for 120
THRESHOLD_TIME=FRAME_TIME
SAMPLING_RATE=16000
N_MFCC=20
BREATH_THRESHOLD=100*10**(-3)
BREATH_TO_BREATH_TIME=150*10**(-3)
VAD_THRESHOLD=0.1
join=0
remove=1
classifier_threshold=0.5
# Specify the path to your pickle file
pickle_file_path = 'Normalisation_parameters_2018_full_data.pickle'
ModelWeightFilepath='Breath_detection_3BILSTM_2018_full_data_80ms_10ms_10ms_best_weights.hdf5'
# global model, utils, original_task_model, get_speech_timestamps, read_audio, Feature_mean, Feature_std
# ***********************************************
# Initialisation
# ***********************************************
print("Reading normalisation parameters")
try:
# Open the file in binary read mode
with open(pickle_file_path, 'rb') as file:
# Load the object from the file
Feature_mean,Feature_std = pickle.load(file)
print("Object loaded successfully!")
print(Feature_mean.shape,Feature_std.shape)
except Exception as e:
print(f"An error occurred: {e}")
print("Initialising the Breath Detection model")
lstm_1= 24
l2_1= 0.02
drop_1= 0.25
lstm_2= 8
l2_2= 0.04
drop_2= 0.3
lstm_3= 24
l2_3= 0.03
drop_3= 0.45
lr= 0.0001
input = Input(shape=Feature_mean.shape)
# print(input.shape)
lay1=Bidirectional(LSTM(lstm_1,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_1),
return_sequences=True))(input)
lay1=Dropout(drop_1)(lay1)
# print(lay1.shape)
lay2=Bidirectional(LSTM(lstm_2,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_2),
return_sequences=True))(lay1)
lay2=Dropout(drop_2)(lay2)
# print(lay2.shape)
lay3=Bidirectional(LSTM(lstm_3,activation='tanh',kernel_regularizer=tf.keras.regularizers.l2(l2_3),
return_sequences=False))(lay2)
lay3=Dropout(drop_3)(lay3)
# print(lay3.shape)
output=Dense(1,activation='sigmoid')(lay3)
# print(output.shape)
original_task_model=Model(inputs=input,outputs=output,name='BILSTM_model')
# original_task_model.summary()
original_task_model.load_weights(ModelWeightFilepath)
print("Initialising Voice Activity Detection Model")
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=True)
(get_speech_timestamps,_, read_audio,*_) = utils
def speech_feature_melspect(speech_seg,Fs,frame_length,hop_length,s_frame_length,s_hop_length):
Feat=[]
Feature_min=[]
Feature_max=[]
index_start=0;
index_end=frame_length;
fft_length=int(2**np.ceil(np.log(int(s_frame_length))/np.log(2)))
speech_seg = lb.effects.preemphasis(speech_seg)
while index_end<len(speech_seg):
s_frame=speech_seg[range(index_start,index_end)]
cepst=lb.feature.melspectrogram(y=s_frame.reshape((-1,)),sr=Fs,n_fft=fft_length,win_length=s_frame_length,
hop_length=s_hop_length,window='hann',n_mels=60,power=1)
cepst=lb.power_to_db(cepst, ref=np.max)
Feat.append(cepst)
index_start += hop_length;
index_end += hop_length;
Feat=np.array(Feat)
return Feat
def read_speech_derive_vad (speech_file_path,sampling_rate,original_task_model,Feature_mean,Feature_std):
# sampling_rate = SAMPLING_RATE # also accepts 8000
wav = read_audio(speech_file_path, sampling_rate=SAMPLING_RATE)
# get speech timestamps from full audio file
speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=sampling_rate)
index_vad = []
for item in speech_timestamps:
index_vad.extend([item['start'],item['end']])
if index_vad[0] != 0:
index_vad = [0] + index_vad
if index_vad[-1] != len(wav):
index_vad.append(len(wav))
else:
index_vad = index_vad[:-1]
index_vad = np.array(index_vad)
speech,Fs=lb.load(speech_file_path,sr=sampling_rate)
speech_scaled=speech/max(abs(speech))
return speech,speech_scaled,index_vad
def remove_small_breaths(index_b,threshold_breath,speech_b_detect):
for i in range(int(np.size(index_b)/2)):
b_length=index_b[0,2*i+1]-index_b[0,2*i]
if b_length <= threshold_breath:
speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=0
index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
if speech_b_detect[0]==1:
index_b=np.insert(index_b,0,0)
if speech_b_detect[-1]==1:
index_b=np.append(index_b,len(speech_b_detect))
index_b=np.reshape(index_b,(1,-1))
return index_b,speech_b_detect
def join_close_breaths(index_b,threshold_breath_to_breath,speech_b_detect):
for i in range(int(np.size(index_b)/2)-1):
bb_length=index_b[0,2*i+2]-index_b[0,2*i+1]
if bb_length <= threshold_breath_to_breath:
speech_b_detect[range(int(index_b[0,2*i+1]),int(index_b[0,2*i+2])+1)]=1
index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
if speech_b_detect[0]==1:
index_b=np.insert(index_b,0,0)
if speech_b_detect[-1]==1:
index_b=np.append(index_b,len(speech_b_detect))
index_b=np.reshape(index_b,(1,-1))
frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
offset = frame_length - hop_length
for i in range(int(np.size(index_b)/2)):
index_b[2*i+1] = index_b[2*i+1] + offset
speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=1
return index_b,speech_b_detect
# ***********************************************
def detect_breath_from_speed_vad(speech,index_vad):
index_vad=np.reshape(index_vad,(1,-1))
frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
s_frame_length=int(np.floor(S_FRAME_TIME*SAMPLING_RATE))
s_hop_length=int(np.floor(S_HOP_TIME*SAMPLING_RATE))
speech_b_detect=np.zeros(np.size(speech))
for vi in range(int(np.size(index_vad)/2)):
index_start=index_vad[0,2*vi]
index_end=index_vad[0,2*vi+1]
speech_seg=speech[index_start:index_end]
if (len(speech_seg)> frame_length+1):
feature=speech_feature_melspect(speech_seg, SAMPLING_RATE,
frame_length, hop_length,
s_frame_length, s_hop_length)
feature=(feature-Feature_mean)/Feature_std
prediction=original_task_model.predict(feature)
y_pred=np.array(list(map(int,prediction>classifier_threshold)))
if sum(y_pred)>2:
detect_point=np.argwhere(y_pred==1)
speech_b_detect[int(index_start+detect_point[0]*hop_length):int(index_start+(detect_point[-1]+1)*hop_length)]=1
index_b=np.argwhere(abs(np.diff(speech_b_detect))==1)
if speech_b_detect[0]==1:
index_b=np.insert(index_b,0,0)
if speech_b_detect[-1]==1:
index_b=np.append(index_b,len(speech_b_detect))
index_b=np.reshape(index_b,(1,-1))
index_b1=index_b.copy()
threshold_breath=BREATH_THRESHOLD*SAMPLING_RATE
threshold_breath_to_breath=BREATH_TO_BREATH_TIME*SAMPLING_RATE
frame_length=int(np.floor(FRAME_TIME*SAMPLING_RATE))
hop_length=int(np.floor(HOP_TIME*SAMPLING_RATE))
offset = frame_length - hop_length
print(f"Number of breaths detected: {np.size(index_b)/2}")
for i in range(int(np.size(index_b)/2)):
index_b[0,2*i+1] = index_b[0,2*i+1] + offset
if (index_b[0,2*i+1] > len(speech)):
index_b[0,2*i+1]=len(speech)
speech_b_detect[range(int(index_b[0,2*i]),int(index_b[0,2*i+1])+1)]=1
# if join==1:
# index_b,speech_b_detect=join_close_breaths(index_b,threshold_breath_to_breath,speech_b_detect)
# if remove==1:
# index_b,speech_b_detect=remove_small_breaths(index_b,threshold_breath,speech_b_detect)
return speech_b_detect
def detect_breath_from_speed(speech_file_path,original_task_model,Feature_mean,Feature_std):
print("Finding Voice Activity Deteciton")
speech,speech_scaled,index_vad=read_speech_derive_vad(speech_file_path,SAMPLING_RATE,original_task_model,Feature_mean,Feature_std)
print(f"Number of Non-Voice regions: {len(index_vad)/2}")
print("Detecting Breath sound in speech")
speech_b_detect=detect_breath_from_speed_vad(speech,index_vad)
return speech,speech_b_detect
def plot_waveform(speech,SAMPLING_RATE,speech_b_detect):
# Read the audio file
# Create the X values based on the length of the speech data and the sampling rate
X = np.divide(range(0, len(speech)), SAMPLING_RATE)
# Create a figure
plt.figure(figsize=(8, 3))
# Define font size
font_size = 24
# Second subplot: Speech, Detected breath, and True breath
# plt.subplot(3, 1, 2)
plt.plot(X, 0.5*speech, label="Speech", color='blue', linewidth=2)
plt.plot(X, 0.2 * speech_b_detect, label="Detected breath", color='red', linewidth=3)
plt.title(f"Speech and detected breaths", fontsize=24)
plt.legend(fontsize=12)
plt.xlabel("Time (seconds)", fontsize=20)
plt.ylabel("Amplitude", fontsize=20)
plt.grid(True)
# Save to a file
output_image_file = "waveform.png"
plt.savefig(output_image_file)
plt.close()
return output_image_file
# if __name__ == "__main__":
# speech_file_path = 'DATA\Introductory\C1W1L01.wav'
# original_task_model,Feature_mean,Feature_std = initialisation()
# def gradio_interface(image_file,input_audio_file):
def gradio_interface(text,input_audio_file):
print("Gradio Interface audio file:",input_audio_file)
# Load the audio file
audio = AudioSegment.from_file(input_audio_file)
# Process the audio (e.g., normalize)
processed_audio = audio.normalize()
# Export the processed audio to a file
speech_file_path = "input_audio.wav"
processed_audio.export(speech_file_path, format="wav")
speech,speech_b_detect = detect_breath_from_speed(speech_file_path,original_task_model,Feature_mean,Feature_std)
breath_output = 10*np.multiply(speech,speech_b_detect)
breath_enhanced_speech = speech + breath_output
print("Writing output file")
output_audio_file = "Breath_v1.wav"
print(f"Output file path : {output_audio_file}")
sf.write(output_audio_file, breath_enhanced_speech, samplerate= SAMPLING_RATE,format='WAV')
output_image_file = plot_waveform(speech,SAMPLING_RATE,speech_b_detect)
return output_image_file,output_audio_file
# Example speech links for download
example_links = """
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/C1W1L01_half.wav" download>Download Example Speech 1</a><br>
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/aljazeera_only_report.wav" download>Download Example Speech 2</a><br>
<a href="https://github.com/kmiyasararafath/BreathSoundDetection/blob/main/Example%20Speech/nz_pm_speech.wav" download>Download Example Speech 3</a>
"""
# Create the Gradio interface
# default_image = "Text.png"
examples=gr.Markdown(f"Upload a speech audio file to process. Please record the voice in a noise less environment with a good mic near to your mouth and nose. You can also download example speeches below.\n{example_links}")
audio_input = gr.Audio(sources="upload", type="filepath", label="Upload your speech file")
iface = gr.Interface(
fn=gradio_interface,
# inputs=[gr.Image(type="filepath", value=default_image,interactive=False),gr.Audio(sources=["microphone","upload"], type="filepath",format='wav')],
inputs=[examples,audio_input],
outputs=[gr.Image(type="filepath"),gr.Audio(type="filepath")],
title="Breath Sound Detector",
description="Upload the speech file. The audio will be processed and the breath detection will be performed. The detected breath will be displayed in the image and the breath enhanced speech can be heard.",
)
# Launch the Gradio interface
iface.launch() |