Spaces:
Sleeping
Sleeping
File size: 35,359 Bytes
20df729 b2cbb03 20df729 b2cbb03 20df729 2702fb3 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 b2cbb03 20df729 13ba451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
from langchain.text_splitter import CharacterTextSplitter
import json
import os
import random
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
import google.generativeai as genai
import nltk
import pandas as pd
from groq import Groq
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_cohere import CohereRerank
from langchain_community.document_loaders import Docx2txtLoader
from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders import UnstructuredCSVLoader
from langchain_community.document_loaders import UnstructuredExcelLoader
from langchain_community.document_loaders import UnstructuredHTMLLoader
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.document_loaders import UnstructuredPowerPointLoader
from langchain_community.document_loaders import UnstructuredXMLLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_community.llms import Cohere
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from typing import List
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
nltk.download('punkt')
def process_json_file(file_path):
json_data = []
with open(file_path, 'r') as file:
for line in file:
try:
data = json.loads(line)
json_data.append(data)
except json.JSONDecodeError:
try:
data = json.loads(line[:-1])
json_data.append(data)
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return json_data
from dotenv import load_dotenv
import os
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
GOOGLE_API_KEY1= os.getenv("GOOGLE_API_KEY_1")
GOOGLE_API_KEY= os.getenv("GOOGLE_API_KEY")
os.environ["COHERE_API_KEY"] = COHERE_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
client = Groq(
api_key= GROQ_API_KEY,
)
genai.configure(api_key=GOOGLE_API_KEY1)
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", task_type="retrieval_document")
llm = ChatGoogleGenerativeAI(model='gemini-pro',
max_output_tokens=2048,
temperature=0.2,
convert_system_message_to_human=True)
def extract_multi_metadata_content(texts, tests):
extracted_content = []
precomputed_metadata = [x.metadata['source'].lower() for x in texts]
for idx, test in enumerate(tests):
temp_content = []
test_terms = set(test.lower().split())
for metadata_lower, x in zip(precomputed_metadata, texts):
if any(term in metadata_lower for term in test_terms):
temp_content.append(x.page_content)
if idx == 0:
extracted_content.append(f"Dữ liệu của {test}:\n{''.join(temp_content)}")
else:
extracted_content.append(''.join(temp_content))
return '\n'.join(extracted_content)
import unicodedata
def text_preprocessing(text):
text = text.lower()
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002500-\U00002BEF" # chinese char
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001f926-\U0001f937"
u"\U00010000-\U0010ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u200d"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufe0f" # dingbats
u"\u3030"
"]+", flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
text = unicodedata.normalize('NFC', text)
words = text.split()
text = ' '.join(words)
return text
def find_matching_files_in_docs_12_id(text, id):
folder_path = f"/code/temp/{id}"
search_terms = []
search_terms_old = []
matching_index = []
search_origin = re.findall(r'\b\w+\.\w+\b|\b\w+\b', text)
search_terms_origin = []
for word in search_origin:
if '.' in word:
search_terms_origin.append(word)
else:
search_terms_origin.extend(re.findall(r'\b\w+\b', word))
file_names_with_extension = re.findall(r'\b\w+\.\w+\b|\b\w+\b', text.lower())
file_names_with_extension_old = re.findall(r'\b(\w+\.\w+)\b', text)
for file_name in search_terms_origin:
if "." in file_name:
search_terms_old.append(file_name)
for file_name in file_names_with_extension_old:
if "." in file_name:
search_terms_old.append(file_name)
for file_name in file_names_with_extension:
search_terms.append(file_name)
clean_text_old = text
clean_text = text.lower()
for term in search_terms_old:
clean_text_old = clean_text_old.replace(term, '')
for term in search_terms:
clean_text = clean_text.replace(term, '')
words_old = re.findall(r'\b\w+\b', clean_text_old)
search_terms_old.extend(words_old)
matching_files = set()
for root, dirs, files in os.walk(folder_path):
for file in files:
for term in search_terms:
if term.lower() in file.lower():
term_position = search_terms.index(term)
matching_files.add(file)
matching_index.append(term_position)
break
matching_files_old1 = []
matching_index.sort()
for x in matching_index:
matching_files_old1.append(search_terms_origin[x])
return matching_files, matching_files_old1
def convert_xlsx_to_csv(xlsx_file_path, csv_file_path):
df = pd.read_excel(xlsx_file_path)
df.to_csv(csv_file_path, index=False)
def save_list_CSV_id(file_list, id):
text = ""
for x in file_list:
if x.endswith('.xlsx'):
old = f"/code/temp/{id}/{x}"
new = old.replace(".xlsx", ".csv")
convert_xlsx_to_csv(old, new)
x = x.replace(".xlsx", ".csv")
loader1 = CSVLoader(f"/code/user_file/{id}/{x}")
docs1 = loader1.load()
text += f"Dữ liệu file {x}:\n"
for z in docs1:
text += z.page_content + "\n"
return text
def merge_files(file_set, file_list):
"""Hàm này ghép lại các tên file dựa trên điều kiện đã cho."""
merged_files = {}
for file_name in file_list:
name = file_name.split('.')[0]
for f in file_set:
if name in f:
merged_files[name] = f
break
return merged_files
def replace_keys_with_values(original_dict, replacement_dict):
new_dict = {}
for key, value in original_dict.items():
if key in replacement_dict:
new_key = replacement_dict[key]
new_dict[new_key] = value
else:
new_dict[key] = value
return new_dict
def aws1_csv_id(new_dict_csv, id):
text = ""
query_all = ""
keyword = []
for key, value in new_dict_csv.items():
print(key, value)
query_all += value
keyword.append(key)
test = save_list_CSV_id(keyword, id)
text += test
sources = ",".join(keyword)
return text, query_all, sources
def chat_llama3(prompt_query):
try:
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "Bạn là một trợ lý trung thưc, trả lời dựa trên nội dung tài liệu được cung cấp. Chỉ trả lời liên quan đến câu hỏi một cách đầy đủ chính xác, không bỏ sót thông tin."
},
{
"role": "user",
"content": f"{prompt_query}",
}
],
model="llama3-70b-8192",
temperature=0.0,
max_tokens=9000,
stop=None,
stream=False,
)
return chat_completion.choices[0].message.content
except Exception as error:
return False
def chat_gemini(prompt):
generation_config = {
"temperature": 0.0,
"top_p": 0.0,
"top_k": 0,
"max_output_tokens": 8192,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest",
generation_config=generation_config,
safety_settings=safety_settings)
convo = model.start_chat(history=[])
convo.send_message(prompt)
return convo.last.text
def question_answer(question):
completion = chat_llama3(question)
if completion:
return completion
else:
answer = chat_gemini(question)
return answer
def check_persist_directory(id, file_name):
directory_path = f"/code/temp/vector_database/{id}/{file_name}"
return os.path.exists(directory_path)
from langchain_community.vectorstores import FAISS
def check_path_exists(path):
return os.path.exists(path)
def aws1_all_id(new_dict, text_alls, id, thread_id):
answer = ""
COHERE_API_KEY1 = os.getenv("COHERE_API_KEY_1")
os.environ["COHERE_API_KEY"] = COHERE_API_KEY1
answer_relevant = ""
directory = ""
for key, value in new_dict.items():
query = value
query = text_preprocessing(query)
keyword, keyword2 = find_matching_files_in_docs_12_id(query, id)
data = extract_multi_metadata_content(text_alls, keyword)
if keyword:
file_name = next(iter(keyword))
text_splitter = CharacterTextSplitter(chunk_size=3200, chunk_overlap=1500)
texts_data = text_splitter.split_text(data)
if check_persist_directory(id, file_name):
vectordb_query = Chroma(persist_directory=f"/code/temp/vector_database/{id}/{file_name}", embedding_function=embeddings)
else:
vectordb_query = Chroma.from_texts(texts_data,
embedding=embeddings,
persist_directory=f"/code/temp/vector_database/{id}/{file_name}")
k_1 = len(texts_data)
retriever = vectordb_query.as_retriever(search_kwargs={f"k": k_1})
bm25_retriever = BM25Retriever.from_texts(texts_data)
bm25_retriever.k = k_1
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, retriever],
weights=[0.6, 0.4])
docs = ensemble_retriever.get_relevant_documents(f"{query}")
path = f"/code/temp/vector_database/FAISS/{id}/{file_name}"
if check_path_exists(path):
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
else:
docsearch = FAISS.from_documents(docs, embeddings)
docsearch.save_local(f"/code/temp/vector_database/FAISS/{id}/{file_name}")
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
k_2 = len(docs)
compressor = CohereRerank(top_n=3)
retrieve3 = docsearch.as_retriever(search_kwargs={f"k": k_2})
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retrieve3
)
compressed_docs = compression_retriever.get_relevant_documents(f"{query}")
if compressed_docs:
data = compressed_docs[0].page_content
text = ''.join(map(lambda x: x.page_content, compressed_docs))
prompt_document = f"Dựa vào nội dung sau:{text}. Hãy trả lời câu hỏi sau đây: {query}. Mà không thay đổi nội dung mà mình đã cung cấp. Cuối cùng nếu câu hỏi sử dụng tiếng Việt thì phải trả lời bằng Vietnamese. Nếu câu hỏi sử dụng tiếng Anh phải trả lời bằng English"
answer_for = question_answer(prompt_document)
answer += answer_for + "\n"
answer_relevant = data
directory = file_name
return answer, answer_relevant, directory
def extract_content_between_keywords(query, keywords):
contents = {}
num_keywords = len(keywords)
keyword_positions = []
for i in range(num_keywords):
keyword = keywords[i]
keyword_position = query.find(keyword)
keyword_positions.append(keyword_position)
if keyword_position == -1:
continue
next_keyword_position = len(query)
for j in range(i + 1, num_keywords):
next_keyword = keywords[j]
next_keyword_position = query.find(next_keyword)
if next_keyword_position != -1:
break
if i == 0:
content_before = query[:keyword_position].strip()
else:
content_before = query[keyword_positions[i - 1] + len(keywords[i - 1]):keyword_position].strip()
if i == num_keywords - 1:
content_after = query[keyword_position + len(keyword):].strip()
else:
content_after = query[keyword_position + len(keyword):next_keyword_position].strip()
content = f"{content_before} {keyword} {content_after}"
contents[keyword] = content
return contents
def generate_random_questions(filtered_ques_list):
if len(filtered_ques_list) >= 2:
random_questions = random.sample(filtered_ques_list, 2)
else:
random_questions = filtered_ques_list
return random_questions
def generate_question_main(loader, name_file):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4500, chunk_overlap=2500)
texts = text_splitter.split_documents(loader)
question_gen = f"nội dung {name_file} : \n"
question_gen += texts[0].page_content
splitter_ques_gen = RecursiveCharacterTextSplitter(
chunk_size=4500,
chunk_overlap=2200
)
chunks_ques_gen = splitter_ques_gen.split_text(question_gen)
document_ques_gen = [Document(page_content=t) for t in chunks_ques_gen]
llm_ques_gen_pipeline = llm
prompt_template_vn = """
Bạn là một chuyên gia tạo câu hỏi dựa trên tài liệu và tài liệu hướng dẫn.
Bạn làm điều này bằng cách đặt các câu hỏi về đoạn văn bản dưới đây:
------------
{text}
------------
Hãy tạo ra các câu hỏi từ đoạn văn bản này.Nếu đoạn văn là tiếng Việt hãy tạo câu hỏi tiếng Việt. Nếu đoạn văn là tiếng Anh hãy tạo câu hỏi tiếng Anh.
Hãy chắc chắn không bỏ sót bất kỳ thông tin quan trọng nào. Và chỉ tạo với đoạn tài liệu đó tối đa 5 câu hỏi liên quan tới tài liệu cung cấp nhất.Nếu trong đoạn tài liệu có các tên liên quan đến file như demo1.pdf( nhiều file khác) thì phải kèm nó vào nội dung câu hỏi bạn tạo ra.
CÁC CÂU HỎI:
"""
PROMPT_QUESTIONS_VN = PromptTemplate(template=prompt_template_vn, input_variables=["text"])
refine_template_vn = ("""
Bạn là một chuyên gia tạo câu hỏi thực hành dựa trên tài liệu và tài liệu hướng dẫn.
Mục tiêu của bạn là giúp người học chuẩn bị cho một kỳ thi.
Chúng tôi đã nhận được một số câu hỏi thực hành ở mức độ nào đó: {existing_answer}.
Chúng tôi có thể tinh chỉnh các câu hỏi hiện có hoặc thêm câu hỏi mới
(chỉ khi cần thiết) với một số ngữ cảnh bổ sung dưới đây.
------------
{text}
------------
Dựa trên ngữ cảnh mới, hãy tinh chỉnh các câu hỏi bằng tiếng Việt nếu đoạn văn đó cung cấp tiếng Việt. Nếu không hãy tinh chỉnh câu hỏi bằng tiếng Anh nếu đoạn đó cung cấp tiếng Anh.
Nếu ngữ cảnh không hữu ích, vui lòng cung cấp các câu hỏi gốc. Và chỉ tạo với đoạn tài liệu đó tối đa 5 câu hỏi liên quan tới tài liệu cung cấp nhất. Nếu trong đoạn tài liệu có các tên file thì phải kèm nó vào câu hỏi.
CÁC CÂU HỎI:
"""
)
REFINE_PROMPT_QUESTIONS = PromptTemplate(
input_variables=["existing_answer", "text"],
template=refine_template_vn,
)
ques_gen_chain = load_summarize_chain(llm=llm_ques_gen_pipeline,
chain_type="refine",
verbose=True,
question_prompt=PROMPT_QUESTIONS_VN,
refine_prompt=REFINE_PROMPT_QUESTIONS)
ques = ques_gen_chain.run(document_ques_gen)
ques_list = ques.split("\n")
filtered_ques_list = ["{}: {}".format(name_file, re.sub(r'^\d+\.\s*', '', element)) for element in ques_list if
element.endswith('?') or element.endswith('.')]
return generate_random_questions(filtered_ques_list)
def load_file(loader):
return loader.load()
def extract_data2(id):
documents = []
directory_path = f"/code/temp/{id}"
if not os.path.exists(directory_path) or not any(
os.path.isfile(os.path.join(directory_path, f)) for f in os.listdir(directory_path)):
return False
tasks = []
with ThreadPoolExecutor() as executor:
for file in os.listdir(directory_path):
if file.endswith(".pdf"):
pdf_path = os.path.join(directory_path, file)
loader = UnstructuredPDFLoader(pdf_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.docx') or file.endswith('.doc'):
doc_path = os.path.join(directory_path, file)
loader = Docx2txtLoader(doc_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.txt'):
txt_path = os.path.join(directory_path, file)
loader = TextLoader(txt_path, encoding="utf8")
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.pptx'):
ppt_path = os.path.join(directory_path, file)
loader = UnstructuredPowerPointLoader(ppt_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.csv'):
csv_path = os.path.join(directory_path, file)
loader = UnstructuredCSVLoader(csv_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.xlsx'):
excel_path = os.path.join(directory_path, file)
loader = UnstructuredExcelLoader(excel_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.json'):
json_path = os.path.join(directory_path, file)
loader = TextLoader(json_path)
tasks.append(executor.submit(load_file, loader))
elif file.endswith('.md'):
md_path = os.path.join(directory_path, file)
loader = UnstructuredMarkdownLoader(md_path)
tasks.append(executor.submit(load_file, loader))
for future in as_completed(tasks):
result = future.result()
documents.extend(result)
text_splitter = CharacterTextSplitter(chunk_size=4500, chunk_overlap=2500
)
texts = text_splitter.split_documents(documents)
Chroma.from_documents(documents=texts,
embedding=embeddings,
persist_directory=f"/code/temp/vector_database/{id}")
return texts
def generate_question(id):
directory_path = f"/code/temp/{id}"
if not os.path.exists(directory_path) or not any(
os.path.isfile(os.path.join(directory_path, f)) for f in os.listdir(directory_path)):
return False
all_questions = []
tasks = []
with ThreadPoolExecutor() as executor:
for file in os.listdir(directory_path):
if file.endswith(".pdf"):
pdf_path = os.path.join(directory_path, file)
loader = UnstructuredPDFLoader(pdf_path).load()
tasks.append(executor.submit(generate_question_main, loader, file))
elif file.endswith('.docx') or file.endswith('.doc'):
doc_path = os.path.join(directory_path, file)
loader = Docx2txtLoader(doc_path).load()
tasks.append(executor.submit(generate_question_main, loader, file))
elif file.endswith('.txt'):
txt_path = os.path.join(directory_path, file)
loader = TextLoader(txt_path, encoding="utf8").load()
tasks.append(executor.submit(generate_question_main, loader, file))
elif file.endswith('.pptx'):
ppt_path = os.path.join(directory_path, file)
loader = UnstructuredPowerPointLoader(ppt_path).load()
tasks.append(executor.submit(generate_question_main, loader, file))
elif file.endswith('.json'):
json_path = os.path.join(directory_path, file)
loader = TextLoader(json_path, encoding="utf8").load()
tasks.append(executor.submit(generate_question_main, loader, file))
elif file.endswith('.md'):
md_path = os.path.join(directory_path, file)
loader = UnstructuredMarkdownLoader(md_path).load()
tasks.append(executor.submit(generate_question_main, loader, file))
for future in as_completed(tasks):
result = future.result()
all_questions.extend(result)
return all_questions
class Search(BaseModel):
queries: List[str] = Field(
...,
description="Truy vấn riêng biệt để tìm kiếm, giữ nguyên ý chính câu hỏi riêng biệt",
)
def query_analyzer(query):
output_parser = PydanticToolsParser(tools=[Search])
system = """Bạn có khả năng đưa ra các truy vấn tìm kiếm chính xác để lấy thông tin giúp trả lời các yêu cầu của người dùng. Các truy vấn của bạn phải chính xác, không được bỏ ngắn rút gọn.
Nếu bạn cần tra cứu hai hoặc nhiều thông tin riêng biệt, bạn có thể làm điều đó!. Trả lời câu hỏi bằng tiếng Việt(Vietnamese), không được dùng ngôn ngữ khác"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0.0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
text = query_analyzer.invoke(query)
return text
def handle_query(question, text_all, compression_retriever, id, thread_id):
COHERE_API_KEY_3 = os.environ["COHERE_API_KEY_3"]
os.environ["COHERE_API_KEY"] = COHERE_API_KEY_3
query = question
x = query
keyword, key_words_old = find_matching_files_in_docs_12_id(query, id)
# if keyword == set() or key_words_old == list():
# return "Not found file"
file_list = keyword
if file_list:
list_keywords2 = list(key_words_old)
contents1 = extract_content_between_keywords(query, list_keywords2)
merged_result = merge_files(keyword, list_keywords2)
original_dict = contents1
replacement_dict = merged_result
new_dict = replace_keys_with_values(original_dict, replacement_dict)
files_to_remove = [filename for filename in new_dict.keys() if
filename.endswith('.xlsx') or filename.endswith('.csv')]
removed_files = {}
for filename in files_to_remove:
removed_files[filename] = new_dict[filename]
for filename in files_to_remove:
new_dict.pop(filename)
test_csv = ""
text_csv, query_csv, source = aws1_csv_id(removed_files, id)
prompt_csv = ""
answer_csv = ""
if test_csv:
prompt_csv = f"Dựa vào nội dung sau: {text_csv}. Hãy trả lời câu hỏi sau đây: {query_csv}.Bằng tiếng Việt"
answer_csv = question_answer(prompt_csv)
answer_document, data_relevant, source = aws1_all_id(new_dict, text_all, id, thread_id)
answer_all1 = answer_document + answer_csv
return answer_all1, data_relevant, source
else:
compressed_docs = compression_retriever.get_relevant_documents(f"{query}")
relevance_score_float = float(compressed_docs[0].metadata['relevance_score'])
print(relevance_score_float)
if relevance_score_float <= 0.12:
documents1 = []
for file in os.listdir(f"/code/temp/{id}"):
if file.endswith('.csv'):
csv_path = f"/code/temp/{id}/" + file
loader = UnstructuredCSVLoader(csv_path)
documents1.extend(loader.load())
elif file.endswith('.xlsx'):
excel_path = f"/code/temp/{id}/" + file
loader = UnstructuredExcelLoader(excel_path)
documents1.extend(loader.load())
text_splitter_csv = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=2200, chunk_overlap=1500)
texts_csv = text_splitter_csv.split_documents(documents1)
vectordb_csv = Chroma.from_documents(documents=texts_csv,
embedding=embeddings, persist_directory=f'/code/temp/vector_database/csv/{thread_id}')
k = len(texts_csv)
retriever_csv = vectordb_csv.as_retriever(search_kwargs={"k": k})
llm = Cohere(temperature=0)
compressor_csv = CohereRerank(top_n=3, model="rerank-english-v2.0")
compression_retriever_csv = ContextualCompressionRetriever(
base_compressor=compressor_csv, base_retriever=retriever_csv
)
compressed_docs_csv = compression_retriever_csv.get_relevant_documents(f"{query}")
file_path = compressed_docs_csv[0].metadata['source']
print(file_path)
if file_path.endswith('.xlsx'):
new = file_path.replace(".xlsx", ".csv")
convert_xlsx_to_csv(file_path, new)
loader1 = CSVLoader(new)
else:
loader1 = CSVLoader(file_path)
docs1 = loader1.load()
text = " "
for z in docs1:
text += z.page_content + "\n"
prompt_csv = f"Dựa vào nội dung sau: {text}. Hãy trả lời câu hỏi sau đây: {query}. Bằng tiếng Việt"
answer_csv = question_answer(prompt_csv)
return answer_csv
else:
file_path = compressed_docs[0].metadata['source']
file_path = file_path.replace('\\', '/')
print(file_path)
if file_path.endswith(".pdf"):
loader = UnstructuredPDFLoader(file_path)
elif file_path.endswith('.docx') or file_path.endswith('doc'):
loader = Docx2txtLoader(file_path)
elif file_path.endswith('.txt'):
loader = TextLoader(file_path, encoding="utf8")
elif file_path.endswith('.pptx'):
loader = UnstructuredPowerPointLoader(file_path)
elif file_path.endswith('.xml'):
loader = UnstructuredXMLLoader(file_path)
elif file_path.endswith('.html'):
loader = UnstructuredHTMLLoader(file_path)
elif file_path.endswith('.json'):
loader = TextLoader(file_path)
elif file_path.endswith('.md'):
loader = UnstructuredMarkdownLoader(file_path)
elif file_path.endswith('.xlsx'):
file_path_new = file_path.replace(".xlsx", ".csv")
convert_xlsx_to_csv(file_path, file_path_new)
loader = CSVLoader(file_path_new)
elif file_path.endswith('.csv'):
loader = CSVLoader(file_path)
text_splitter = CharacterTextSplitter(chunk_size=3200, chunk_overlap=1500)
texts = text_splitter.split_documents(loader.load())
k_1 = len(texts)
file_name = os.path.basename(file_path)
if check_persist_directory(id, file_name):
vectordb_file = Chroma(persist_directory=f"/code/temp/vector_database/{id}/{file_name}",
embedding_function=embeddings)
else:
vectordb_file = Chroma.from_documents(texts,
embedding=embeddings,
persist_directory=f"/code/temp/vector_database/{id}/{file_name}")
retriever_file = vectordb_file.as_retriever(search_kwargs={f"k": k_1})
bm25_retriever = BM25Retriever.from_documents(texts)
bm25_retriever.k = k_1
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, retriever_file],
weights=[0.6, 0.4])
docs = ensemble_retriever.get_relevant_documents(f"{query}")
path = f"/code/temp/vector_database/FAISS/{id}/{file_name}"
if check_path_exists(path):
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
else:
docsearch = FAISS.from_documents(docs, embeddings)
docsearch.save_local(f"/code/temp/vector_database/FAISS/{id}/{file_name}")
docsearch = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
k_2 = len(docs)
retrieve3 = docsearch.as_retriever(search_kwargs={f"k": k_2})
compressor_file = CohereRerank(top_n=3, model="rerank-english-v2.0")
compression_retriever_file = ContextualCompressionRetriever(
base_compressor=compressor_file, base_retriever=retrieve3
)
compressed_docs_file = compression_retriever_file.get_relevant_documents(f"{x}")
query = question
text = ''.join(map(lambda x: x.page_content, compressed_docs_file))
prompt = f"Dựa vào nội dung sau:{text}. Hãy trả lời câu hỏi sau đây: {query}. Mà không thay đổi, chỉnh sửa nội dung mà mình đã cung cấp"
answer = question_answer(prompt)
list_relevant = compressed_docs_file[0].page_content
source = file_name
return answer, list_relevant, source
import concurrent.futures
def handle_query_upgrade_keyword_old(query_all, text_all, id,chat_history):
COHERE_API_KEY_2 = os.environ["COHERE_API_KEY_2"]
os.environ["COHERE_API_KEY"] = COHERE_API_KEY_2
test = query_analyzer(query_all)
test_string = str(test)
matches = re.findall(r"'([^']*)'", test_string)
vectordb = Chroma(persist_directory=f"/code/temp/vector_database/{id}", embedding_function=embeddings)
k = len(text_all)
retriever = vectordb.as_retriever(search_kwargs={"k": k})
compressor = CohereRerank(top_n=5, model="rerank-english-v2.0")
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever= retriever)
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = {executor.submit(handle_query, query, text_all, compression_retriever, id, i): query for i, query in
enumerate(matches)}
results = []
data_relevant = []
sources = []
for future in as_completed(futures):
try:
result, list_data, list_source = future.result()
results.append(result)
data_relevant.append(list_data)
sources.append(list_source)
except Exception as e:
print(f'An error occurred: {e}')
answer_all = ''.join(results)
prompt1 = f"Dựa vào nội dung sau: {answer_all}. Hãy trả lời câu hỏi sau đây: {query_all}. Lưu ý rằng ngữ cảnh của cuộc trò chuyện này trước đây là: {chat_history}. Vui lòng trả lời câu hỏi mà không thay đổi, chỉnh sửa nội dung mà mình đã cung cấp."
answer1 = question_answer(prompt1)
return answer1, data_relevant, sources |