File size: 14,884 Bytes
52ee7a9
0b336c0
 
a6bd112
 
52ee7a9
 
 
0b336c0
52ee7a9
a6bd112
52ee7a9
 
0b336c0
52ee7a9
a6bd112
0b336c0
 
 
52ee7a9
0b336c0
52ee7a9
 
a6bd112
0b336c0
 
1e2e3b8
 
 
0b336c0
 
 
 
 
 
 
 
 
 
1e2e3b8
0b336c0
 
 
 
 
 
 
1e2e3b8
86f6253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bb7c94
86f6253
 
 
 
4bb7c94
86f6253
 
 
 
0b336c0
 
86f6253
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
0b336c0
52ee7a9
1e2e3b8
 
0b336c0
52ee7a9
0b336c0
52ee7a9
1e2e3b8
 
0b336c0
52ee7a9
0b336c0
1e2e3b8
0b336c0
1e2e3b8
0b336c0
1e2e3b8
0b336c0
1e2e3b8
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
0b336c0
1e2e3b8
 
 
0b336c0
1e2e3b8
0b336c0
1e2e3b8
0b336c0
1e2e3b8
 
 
 
 
52ee7a9
 
1e2e3b8
 
 
 
 
 
0b336c0
4bb7c94
86f6253
0b336c0
4bb7c94
52ee7a9
e7d7b51
 
 
 
86f6253
e7d7b51
 
 
0b336c0
e7d7b51
 
0b336c0
e7d7b51
0b336c0
e7d7b51
52ee7a9
e7d7b51
52ee7a9
 
 
 
a6bd112
52ee7a9
 
 
 
 
 
0b336c0
 
52ee7a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f6253
52ee7a9
 
 
4bb7c94
d8b73be
4bb7c94
 
a6bd112
 
 
 
 
 
d8b73be
4bb7c94
d8b73be
 
 
4bb7c94
d8b73be
4bb7c94
d8b73be
4bb7c94
d8b73be
a6bd112
 
4bb7c94
 
 
 
a6bd112
4bb7c94
 
d8b73be
86f6253
4bb7c94
 
86f6253
551646a
86f6253
551646a
52ee7a9
551646a
 
 
 
4bb7c94
0b336c0
86f6253
 
 
d8b73be
 
52ee7a9
d8b73be
 
 
4bb7c94
1b1c01c
4bb7c94
d8b73be
 
 
4bb7c94
1b1c01c
4bb7c94
 
 
1b1c01c
4bb7c94
1b1c01c
86f6253
4bb7c94
86f6253
 
4bb7c94
86f6253
 
0b336c0
1e2e3b8
0b336c0
d8b73be
 
4bb7c94
d8b73be
4bb7c94
 
86f6253
1b1c01c
0b336c0
 
4bb7c94
0b336c0
1e2e3b8
0b336c0
 
1e2e3b8
86f6253
1e2e3b8
 
0b336c0
86f6253
1e2e3b8
86f6253
52ee7a9
4bb7c94
 
d8b73be
a6bd112
d8b73be
4bb7c94
1b1c01c
 
 
4bb7c94
 
 
0b336c0
 
 
 
 
 
 
 
 
4bb7c94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import ast
import json
import os
import statistics
from collections import Counter
from typing import Any, Dict, List

import langchain
import openai
import pandas as pd
import regex as re
import requests
from dotenv import load_dotenv
from langchain import OpenAI
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_community.document_loaders import JSONLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI

load_dotenv()


# getting the json files
def get_clinical_record_info(clinical_record_id: str) -> Dict[str, Any]:
    # Request:
    # curl -X GET "https://clinicaltrials.gov/api/v2/studies/NCT00841061" \
    # -H "accept: text/csv"
    request_url = f"https://clinicaltrials.gov/api/v2/studies/{clinical_record_id}"
    response = requests.get(request_url, headers={"accept": "application/json"})
    return response.json()


def get_clinical_records_by_ids(clinical_record_ids: List[str]) -> List[Dict[str, Any]]:
    clinical_records = []
    for clinical_record_id in clinical_record_ids:
        clinical_record_info = get_clinical_record_info(clinical_record_id)
        clinical_records.append(clinical_record_info)
    return clinical_records


# # def process_json_data_for_llm(data):

#     # Define the fields you want to keep
#     fields_to_keep = [
#         "class_of_organization",
#         "title",
#         "overallStatus",
#         "descriptionModule",
#         "conditions",
#         "interventions",
#         "outcomesModule",
#         "eligibilityModule",
#     ]

#     # Iterate through the dictionary and keep only the desired fields
#     filtered_data = []
#     for item in data:
#         try:
#             organization_name = item["protocolSection"]["identificationModule"][
#                 "organization"
#             ]["fullName"]
#         except:
#             organization_name = ""
#         try:
#             project_title = item["protocolSection"]["identificationModule"][
#                 "officialTitle"
#             ]
#         except:
#             project_title = ""
#         try:
#             status = item["protocolSection"]["statusModule"]["overallStatus"]
#         except:
#             status = ""
#         try:
#             briefDescription = item["protocolSection"]["descriptionModule"][
#                 "briefSummary"
#             ]
#         except:
#             briefDescription = ""
#         try:
#             detailedDescription = item["protocolSection"]["descriptionModule"][
#                 "detailedDescription"
#             ]
#         except:
#             detailedDescription = ""
#         try:
#             conditions = item["protocolSection"]["conditionsModule"]["conditions"]
#         except:
#             conditions = []
#         try:
#             keywords = item["protocolSection"]["conditionsModule"]["keywords"]
#         except:
#             keywords = []
#         try:
#             interventions = item["protocolSection"]["armsInterventionsModule"][
#                 "interventions"
#             ]
#         except:
#             interventions = []
#         try:
#             primary_outcomes = item["protocolSection"]["outcomesModule"][
#                 "primaryOutcomes"
#             ]
#         except:
#             primary_outcomes = []
#         try:
#             secondary_outcomes = item["protocolSection"]["outcomesModule"][
#                 "secondaryOutcomes"
#             ]
#         except:
#             secondary_outcomes = []
#         try:
#             eligibility = item["protocolSection"]["eligibilityModule"]
#         except:
#             eligibility = {}
#         filtered_item = {
#             "organization_name": organization_name,
#             "project_title": project_title,
#             "status": status,
#             "briefDescription": briefDescription,
#             "detailedDescription": detailedDescription,
#             "keywords": keywords,
#             "interventions": interventions,
#             "primary_outcomes": primary_outcomes,
#             "secondary_outcomes": secondary_outcomes,
#             "eligibility": eligibility,
#         }
#         filtered_data.append(filtered_item)

#     return filtered_data
#     # for ele in filtered_data:
#     #     print(ele)


def process_dictionaty_with_llm_to_generate_response(json_data):
    # processed_data = process_json_data_for_llm(json_data)
    # res = tagging_chain.invoke({"input": processed_data})
    # return res
    # Iterate through the dictionary and keep only the desired fields
    filtered_data = []
    for item in json_data:
        try:
            organization_name = item["protocolSection"]["identificationModule"][
                "organization"
            ]["fullName"]
        except:
            organization_name = ""
        try:
            project_title = item["protocolSection"]["identificationModule"][
                "officialTitle"
            ]
        except:
            project_title = ""
        try:
            status = item["protocolSection"]["statusModule"]["overallStatus"]
        except:
            status = ""
        try:
            briefDescription = item["protocolSection"]["descriptionModule"][
                "briefSummary"
            ]
        except:
            briefDescription = ""
        try:
            detailedDescription = item["protocolSection"]["descriptionModule"][
                "detailedDescription"
            ]
        except:
            detailedDescription = ""
        try:
            conditions = item["protocolSection"]["conditionsModule"]["conditions"]
        except:
            conditions = []
        try:
            keywords = item["protocolSection"]["conditionsModule"]["keywords"]
        except:
            keywords = []
        try:
            interventions = item["protocolSection"]["armsInterventionsModule"][
                "interventions"
            ]
        except:
            interventions = []
        try:
            primary_outcomes = item["protocolSection"]["outcomesModule"][
                "primaryOutcomes"
            ]
        except:
            primary_outcomes = []
        try:
            secondary_outcomes = item["protocolSection"]["outcomesModule"][
                "secondaryOutcomes"
            ]
        except:
            secondary_outcomes = []
        try:
            eligibility = item["protocolSection"]["eligibilityModule"]
        except:
            eligibility = {}
        filtered_item = {
            "organization_name": organization_name,
            "project_title": project_title,
            "status": status,
            "briefDescription": briefDescription,
            "detailedDescription": detailedDescription,
            "keywords": keywords,
            "interventions": interventions,
            "primary_outcomes": primary_outcomes,
            "secondary_outcomes": secondary_outcomes,
            "eligibility": eligibility,
        }
        filtered_data.append(filtered_item)

    return filtered_data


def get_short_summary_out_of_json_files(data_json):
    prompt_template = """You are an expert on clinicial trials and their analysis of their reports.

# Task
You will be given a text of descriptions of multiple clinical trials realed to similar diseases. Your job is to come up with a short and detailed summary of the descriptions of the clinical trials. Your users are clinical researchers, so you should be technical and specific, including scientific terms in the summary.

{text}"""

    prompt_template = """You are an expert clinician working on the analysis of reports of clinical trials.

# Task
You will be given a set of descriptions of clinical trials. Your job is to come up with a short summary (100-200 words) of the descriptions of the clinical trials. Your users are clinical researchers who are experts in medicine, so you should be technical and specific, including scientific terms. Always be faithful to the original information written in the reports.

To write your summary, you will need to read the following examples, labeled as "Report 1", "Report 2", and so on. Your answer should be a single paragraph (100-200 words) that summarizes the general content of all the reports. Format your answer in Markdown format, **highlighting** the most important concepts, and _italicizing_ the technical concepts extracted from the reports. Be very specific about the details of the clinical trials.

{text}

General summary:"""

    prompt = PromptTemplate.from_template(prompt_template)

    llm = ChatOpenAI(
        temperature=0.5, model_name="gpt-4-turbo", api_key=os.environ["OPENAI_API_KEY"]
    )
    llm_chain = LLMChain(llm=llm, prompt=prompt)

    # Define StuffDocumentsChain
    stuff_chain = StuffDocumentsChain(
        llm_chain=llm_chain, document_variable_name="text"
    )

    descriptions = [
        (
            x["detailedDescription"]
            if "detailedDescription" in x and len(x["detailedDescription"]) > 0
            else x["briefSummary"]
        )
        for x in data_json
        if "detailedDescription" in x or "briefSummary" in x
    ]

    combined_descriptions = ""
    for i, description in enumerate(descriptions):
        combined_descriptions += f"Report {i+1}:\n{description}\n"

    print(f"Combined descriptions: {combined_descriptions}")

    result = stuff_chain.run(combined_descriptions)
    print(f"Result_summarization: {result}")

    return result


def analyze_data(data):
    print(f"Data: {data}")
    # Extract minimum and maximum ages: Turn ['18 Years', '20 Years'] into [18, 20]
    min_ages = [
        int(re.search(r"\d+", age).group()) for age in data["minimum_age"] if age
    ]
    max_ages = [
        int(re.search(r"\d+", age).group()) for age in data["maximum_age"] if age
    ]
    # primary_timeframe= [int(age.split()[0]) for age in data['[primary_outcome]'] if age]

    # Calculate average minimum and maximum ages
    avg_min_age = statistics.mean(min_ages) if min_ages else None
    avg_max_age = statistics.mean(max_ages) if max_ages else None

    # Find most common gender
    gender_counter = Counter(data["gender"])
    most_common_gender = gender_counter.most_common(1)[0][0]

    # Flatten keywords list and find common keywords
    # keywords = [keyword for sublist in data["keywords"] for keyword in sublist]
    # common_keywords = [word for word, count in Counter(keywords).most_common()]

    return {
        "avg_min_age": avg_min_age,
        "avg_max_age": avg_max_age,
        "most_common_gender": most_common_gender,
    }


def tagging_insights_from_json(data_json):
    processed_json = process_dictionaty_with_llm_to_generate_response(data_json)

    tagging_prompt = ChatPromptTemplate.from_template(
        """Extract the desired information from the following JSON data.

Only extract the properties mentioned in the 'Classification' function. Output a list of the extracted properties, starting with [ and ending with ], for each of the properties.

Raw data (in JSON format):
{input}
"""
)

    class Classification(BaseModel):
        # description: str = Field(
        #     description="text description grouping all the clinical trials using briefDescription and detailedDescription keys"
        # )
        # project_title: list = Field(
        #     description="Extract the project titles of all the clinical trials"
        # )
        # status: list = Field(
        #     description="Extract the status of all the clinical trials"
        # )
        # keywords: list = Field(
        #   description="Extract the most relevant keywords for each clinical trials"
        # )
        # interventions: list = Field(
        #     description="describe the interventions for each clinical trial using title, name and description"
        # )
        # primary_outcomes: list = Field(
        #    description="get the timeframe of each clinical trial"
        # )
        # secondary_outcomes: list= Field(description= "get the secondary outcomes of each clinical trial")
        # eligibility: list = Field(
        #   description="get the timeframe of each clinical trial"
        # )
        # healthy_volunteers: list= Field(description= "determine whether the clinical trial requires healthy volunteers")
        minimum_age: list = Field(
            description="get the minimum age from each experiment"
        )
        maximum_age: list = Field(
            description="get the maximum age from each experiment"
        )
        gender: list = Field(description="get the gender from each experiment")

        def get_dict(self):
            return {
                # "project_title": self.project_title,
                # "status": self.status,
                # "keywords": self.keywords,
                # "interventions": self.interventions,
                # "primary_outcomes": self.primary_outcomes,
                # "secondary_outcomes": self.secondary_outcomes,
                # "eligibility": self.eligibility,
                # "healthy_volunteers": self.healthy_volunteers,
                "minimum_age": self.minimum_age,
                "maximum_age": self.maximum_age,
                "gender": self.gender,
            }

    # LLM
    llm = ChatOpenAI(
        temperature=0.6,
        model="gpt-4-turbo",
        openai_api_key=os.environ["OPENAI_API_KEY"],
    ).with_structured_output(Classification)

    # stuff_chain = StuffDocumentsChain(llm_chain=llm, document_variable_name="text")

    tagging_chain = tagging_prompt | llm

    res = tagging_chain.invoke({"input": processed_json})
    unprocessed_results_dict = res.get_dict()

    results_dict = analyze_data(unprocessed_results_dict)

    # stats_dict= {'Average Minimum age': avg_min_age,
    #             'Average Maximum age': avg_max_age,
    #             'Most common gender undergoing the trials': most_common_gender,
    #             'common keywords found in the trials': common_keywords}

    print(f"Result_tagging: {results_dict}")
    return results_dict


# clinical_record_info = get_clinical_records_by_ids(['NCT00841061', 'NCT03035123', 'NCT02272751', 'NCT03035123', 'NCT03055377'])
# print(clinical_record_info)

# with open('data.json', 'w') as f:
#     json.dump(clinical_record_info, f, indent=4)


# tagging_chain = tagging_insights_from_json(json_data)