File size: 9,748 Bytes
93e1b64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Vector Search "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, pandas as pd\n",
    "from sqlalchemy import create_engine, text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "username = 'demo'\n",
    "password = 'demo'\n",
    "hostname = os.getenv('IRIS_HOSTNAME', 'localhost')\n",
    "port = '1972' \n",
    "namespace = 'USER'\n",
    "CONNECTION_STRING = f\"iris://{username}:{password}@{hostname}:{port}/{namespace}\"\n",
    "\n",
    "engine = create_engine(CONNECTION_STRING)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load knowledge graph\n",
    "entity_embeddings = pd.read_csv('./data/entity_embeddings.csv', index_col=0)\n",
    "entity_embeddings[\"embedding\"] = entity_embeddings[\"embedding\"].apply(\n",
    "    lambda x: x[1:-1])\n",
    "\n",
    "len_label = entity_embeddings['label'].str.len().max()\n",
    "len_uri = entity_embeddings['uri'].str.len().max()\n",
    "# TODO: set varchar length dynamically as above\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin(): \n",
    "        result = conn.execute(text('DROP TABLE IF EXISTS Test.EntityEmbeddings'))\n",
    "        sql = f\"\"\"\n",
    "                CREATE TABLE Test.EntityEmbeddings (\n",
    "                        embedding VECTOR(DOUBLE, 50),\n",
    "                        label VARCHAR(143),\n",
    "                        uri VARCHAR(38)\n",
    "                )\n",
    "                \"\"\"\n",
    "        result = conn.execute(text(sql))\n",
    "\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        for index, row in entity_embeddings.iterrows():\n",
    "            sql = text(\"\"\"\n",
    "                INSERT INTO Test.EntityEmbeddings \n",
    "                (embedding, label, uri) \n",
    "                VALUES (TO_VECTOR(:embedding), :label, :uri)\n",
    "            \"\"\")\n",
    "            conn.execute(sql, {\n",
    "                'embedding': str(row['embedding']),\n",
    "                'label': row['label'], \n",
    "                'uri': row['uri']\n",
    "            })\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Calculate distance between entities\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        sql = f\"\"\"\n",
    "                SELECT TOP 10 e1.uri AS uri1, e2.uri AS uri2, e1.label AS label1, e2.label AS label2,\n",
    "                VECTOR_COSINE(e1.embedding, e2.embedding) AS distance\n",
    "                FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2\n",
    "                WHERE e1.uri = 'http://identifiers.org/medgen/C0002395'\n",
    "                ORDER BY distance DESC\n",
    "                \"\"\"\n",
    "        result = conn.execute(text(sql))\n",
    "        data = result.fetchall()\n",
    "        display(data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load clinical trials\n",
    "\n",
    "relation_embeddings = pd.read_csv('./data/relation_embeddings.csv', index_col=0)\n",
    "relation_embeddings[\"embedding\"] = relation_embeddings[\"embedding\"].apply(\n",
    "    lambda x: x[1:-1])\n",
    "\n",
    "len_label = relation_embeddings['label'].str.len().max()\n",
    "len_uri = relation_embeddings['uri'].str.len().max()\n",
    "# TODO: set varchar length dynamically as above\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():# Load \n",
    "        result = conn.execute(text('DROP TABLE IF EXISTS Test.RelationEmbeddings'))\n",
    "        sql = f\"\"\"\n",
    "                CREATE TABLE Test.RelationEmbeddings (\n",
    "                        embedding VECTOR(DOUBLE, 50),\n",
    "                        label VARCHAR(10),\n",
    "                        uri VARCHAR(38)\n",
    "                )\n",
    "                \"\"\"\n",
    "        result = conn.execute(text(sql))\n",
    "\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        for index, row in relation_embeddings.iterrows():\n",
    "            sql = text(\"\"\"\n",
    "                INSERT INTO Test.ClinicalTrials \n",
    "                (embedding, label, uri) \n",
    "                VALUES (TO_VECTOR(:embedding), :label, :uri)\n",
    "            \"\"\")\n",
    "            conn.execute(sql, {\n",
    "                'embedding': str(row['embedding']),\n",
    "                'label': row['label'], \n",
    "                'uri': row['uri']\n",
    "            })\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load knowledge graph\n",
    "clinical_trials = pd.read_csv(\"clinical_trials_embeddings.csv\")\n",
    "clinical_trials[\"embeddings\"] = clinical_trials[\"embeddings\"].apply(lambda x: x[1:-1])\n",
    "display(clinical_trials.head())\n",
    "\n",
    "# TODO: set varchar length dynamically as above\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        result = conn.execute(text(\"DROP TABLE IF EXISTS Test.ClinicalTrials\"))\n",
    "        sql = f\"\"\"\n",
    "                CREATE TABLE Test.ClinicalTrials (\n",
    "                        nct_id VARCHAR(11) PRIMARY KEY,\n",
    "                        diseases TEXT,\n",
    "                        embedding VECTOR(DOUBLE, 768)\n",
    "                )\n",
    "                \"\"\"\n",
    "        result = conn.execute(text(sql))\n",
    "\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        for index, row in clinical_trials.iterrows():\n",
    "\n",
    "            sql = text(\n",
    "                \"\"\"\n",
    "                INSERT INTO Test.ClinicalTrials \n",
    "                (nct_id, diseases, embedding)\n",
    "                VALUES (:nct_id, :diseases, TO_VECTOR(:embedding))\n",
    "            \"\"\"\n",
    "            )\n",
    "            conn.execute(\n",
    "                sql,\n",
    "                {\n",
    "                    \"nct_id\": row[\"nct_id\"],\n",
    "                    \"diseases\": row[\"desease_condition\"],\n",
    "                    \"embedding\": str(row[\"embeddings\"]),\n",
    "                },\n",
    "            )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# %%\n",
    "import pandas as pd\n",
    "import rdflib\n",
    "\n",
    "# Load the disease descriptions from MGDEF.RRF\n",
    "df_disease_descriptions = pd.read_csv(\"MGDEF.RRF\", sep=\"|\", header=0)\n",
    "# Rename the column '#CUI' to 'CUI'\n",
    "df_disease_descriptions.rename(columns={\"#CUI\": \"CUI\"}, inplace=True)\n",
    "# Remove the last column, it's empty\n",
    "df_disease_descriptions = df_disease_descriptions.iloc[:, :-1]\n",
    "# Filter out the rows where the SUPPRESS field is equal to 'Y'\n",
    "df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"SUPPRESS\"] != \"Y\"]\n",
    "# Some of the rows include a \\n character, so we need to remove the rows where the CUI field contains spaces or doesn't start with 'C'\n",
    "df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"CUI\"].str.startswith(\"C\") & ~df_disease_descriptions[\"CUI\"].str.contains(\" \")]\n",
    "# Remove the rows where the DEF field is empty\n",
    "df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"DEF\"].notnull()]\n",
    "df_disease_descriptions['uri'] = df_disease_descriptions['CUI'].apply(lambda x: f'http://identifiers.org/medgen/{x}')\n",
    "\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin(): \n",
    "        result = conn.execute(text('DROP TABLE IF EXISTS Test.DiseaseDescriptions'))\n",
    "        sql = f\"\"\"\n",
    "                CREATE TABLE Test.DiseaseDescriptions (\n",
    "                        uri VARCHAR(50),\n",
    "                        description TEXT\n",
    "                )\n",
    "                \"\"\"\n",
    "        result = conn.execute(text(sql))\n",
    "\n",
    "with engine.connect() as conn:\n",
    "    with conn.begin():\n",
    "        for index, row in df_disease_descriptions.iterrows():\n",
    "            print(row['DEF'])\n",
    "            print(row['uri'])\n",
    "            sql = text(\"\"\"\n",
    "                INSERT INTO Test.DiseaseDescriptions \n",
    "                (uri, description) \n",
    "                VALUES ( :uri, :description)\n",
    "            \"\"\")\n",
    "            conn.execute(sql, {\n",
    "                'uri': row['uri'],\n",
    "                'description': row['DEF'], \n",
    "            })"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "treehacks",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}