Spaces:
Sleeping
Sleeping
File size: 9,748 Bytes
93e1b64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Vector Search "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os, pandas as pd\n",
"from sqlalchemy import create_engine, text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"username = 'demo'\n",
"password = 'demo'\n",
"hostname = os.getenv('IRIS_HOSTNAME', 'localhost')\n",
"port = '1972' \n",
"namespace = 'USER'\n",
"CONNECTION_STRING = f\"iris://{username}:{password}@{hostname}:{port}/{namespace}\"\n",
"\n",
"engine = create_engine(CONNECTION_STRING)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load knowledge graph\n",
"entity_embeddings = pd.read_csv('./data/entity_embeddings.csv', index_col=0)\n",
"entity_embeddings[\"embedding\"] = entity_embeddings[\"embedding\"].apply(\n",
" lambda x: x[1:-1])\n",
"\n",
"len_label = entity_embeddings['label'].str.len().max()\n",
"len_uri = entity_embeddings['uri'].str.len().max()\n",
"# TODO: set varchar length dynamically as above\n",
"with engine.connect() as conn:\n",
" with conn.begin(): \n",
" result = conn.execute(text('DROP TABLE IF EXISTS Test.EntityEmbeddings'))\n",
" sql = f\"\"\"\n",
" CREATE TABLE Test.EntityEmbeddings (\n",
" embedding VECTOR(DOUBLE, 50),\n",
" label VARCHAR(143),\n",
" uri VARCHAR(38)\n",
" )\n",
" \"\"\"\n",
" result = conn.execute(text(sql))\n",
"\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" for index, row in entity_embeddings.iterrows():\n",
" sql = text(\"\"\"\n",
" INSERT INTO Test.EntityEmbeddings \n",
" (embedding, label, uri) \n",
" VALUES (TO_VECTOR(:embedding), :label, :uri)\n",
" \"\"\")\n",
" conn.execute(sql, {\n",
" 'embedding': str(row['embedding']),\n",
" 'label': row['label'], \n",
" 'uri': row['uri']\n",
" })\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate distance between entities\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" sql = f\"\"\"\n",
" SELECT TOP 10 e1.uri AS uri1, e2.uri AS uri2, e1.label AS label1, e2.label AS label2,\n",
" VECTOR_COSINE(e1.embedding, e2.embedding) AS distance\n",
" FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2\n",
" WHERE e1.uri = 'http://identifiers.org/medgen/C0002395'\n",
" ORDER BY distance DESC\n",
" \"\"\"\n",
" result = conn.execute(text(sql))\n",
" data = result.fetchall()\n",
" display(data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load clinical trials\n",
"\n",
"relation_embeddings = pd.read_csv('./data/relation_embeddings.csv', index_col=0)\n",
"relation_embeddings[\"embedding\"] = relation_embeddings[\"embedding\"].apply(\n",
" lambda x: x[1:-1])\n",
"\n",
"len_label = relation_embeddings['label'].str.len().max()\n",
"len_uri = relation_embeddings['uri'].str.len().max()\n",
"# TODO: set varchar length dynamically as above\n",
"with engine.connect() as conn:\n",
" with conn.begin():# Load \n",
" result = conn.execute(text('DROP TABLE IF EXISTS Test.RelationEmbeddings'))\n",
" sql = f\"\"\"\n",
" CREATE TABLE Test.RelationEmbeddings (\n",
" embedding VECTOR(DOUBLE, 50),\n",
" label VARCHAR(10),\n",
" uri VARCHAR(38)\n",
" )\n",
" \"\"\"\n",
" result = conn.execute(text(sql))\n",
"\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" for index, row in relation_embeddings.iterrows():\n",
" sql = text(\"\"\"\n",
" INSERT INTO Test.ClinicalTrials \n",
" (embedding, label, uri) \n",
" VALUES (TO_VECTOR(:embedding), :label, :uri)\n",
" \"\"\")\n",
" conn.execute(sql, {\n",
" 'embedding': str(row['embedding']),\n",
" 'label': row['label'], \n",
" 'uri': row['uri']\n",
" })\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load knowledge graph\n",
"clinical_trials = pd.read_csv(\"clinical_trials_embeddings.csv\")\n",
"clinical_trials[\"embeddings\"] = clinical_trials[\"embeddings\"].apply(lambda x: x[1:-1])\n",
"display(clinical_trials.head())\n",
"\n",
"# TODO: set varchar length dynamically as above\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" result = conn.execute(text(\"DROP TABLE IF EXISTS Test.ClinicalTrials\"))\n",
" sql = f\"\"\"\n",
" CREATE TABLE Test.ClinicalTrials (\n",
" nct_id VARCHAR(11) PRIMARY KEY,\n",
" diseases TEXT,\n",
" embedding VECTOR(DOUBLE, 768)\n",
" )\n",
" \"\"\"\n",
" result = conn.execute(text(sql))\n",
"\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" for index, row in clinical_trials.iterrows():\n",
"\n",
" sql = text(\n",
" \"\"\"\n",
" INSERT INTO Test.ClinicalTrials \n",
" (nct_id, diseases, embedding)\n",
" VALUES (:nct_id, :diseases, TO_VECTOR(:embedding))\n",
" \"\"\"\n",
" )\n",
" conn.execute(\n",
" sql,\n",
" {\n",
" \"nct_id\": row[\"nct_id\"],\n",
" \"diseases\": row[\"desease_condition\"],\n",
" \"embedding\": str(row[\"embeddings\"]),\n",
" },\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# %%\n",
"import pandas as pd\n",
"import rdflib\n",
"\n",
"# Load the disease descriptions from MGDEF.RRF\n",
"df_disease_descriptions = pd.read_csv(\"MGDEF.RRF\", sep=\"|\", header=0)\n",
"# Rename the column '#CUI' to 'CUI'\n",
"df_disease_descriptions.rename(columns={\"#CUI\": \"CUI\"}, inplace=True)\n",
"# Remove the last column, it's empty\n",
"df_disease_descriptions = df_disease_descriptions.iloc[:, :-1]\n",
"# Filter out the rows where the SUPPRESS field is equal to 'Y'\n",
"df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"SUPPRESS\"] != \"Y\"]\n",
"# Some of the rows include a \\n character, so we need to remove the rows where the CUI field contains spaces or doesn't start with 'C'\n",
"df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"CUI\"].str.startswith(\"C\") & ~df_disease_descriptions[\"CUI\"].str.contains(\" \")]\n",
"# Remove the rows where the DEF field is empty\n",
"df_disease_descriptions = df_disease_descriptions[df_disease_descriptions[\"DEF\"].notnull()]\n",
"df_disease_descriptions['uri'] = df_disease_descriptions['CUI'].apply(lambda x: f'http://identifiers.org/medgen/{x}')\n",
"\n",
"with engine.connect() as conn:\n",
" with conn.begin(): \n",
" result = conn.execute(text('DROP TABLE IF EXISTS Test.DiseaseDescriptions'))\n",
" sql = f\"\"\"\n",
" CREATE TABLE Test.DiseaseDescriptions (\n",
" uri VARCHAR(50),\n",
" description TEXT\n",
" )\n",
" \"\"\"\n",
" result = conn.execute(text(sql))\n",
"\n",
"with engine.connect() as conn:\n",
" with conn.begin():\n",
" for index, row in df_disease_descriptions.iterrows():\n",
" print(row['DEF'])\n",
" print(row['uri'])\n",
" sql = text(\"\"\"\n",
" INSERT INTO Test.DiseaseDescriptions \n",
" (uri, description) \n",
" VALUES ( :uri, :description)\n",
" \"\"\")\n",
" conn.execute(sql, {\n",
" 'uri': row['uri'],\n",
" 'description': row['DEF'], \n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "treehacks",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|