Spaces:
Runtime error
Runtime error
File size: 3,693 Bytes
e8b3788 549392b e8b3788 0e9979f 900e333 e8b3788 900e333 72f8242 900e333 72f8242 e8b3788 900e333 e8b3788 900e333 e8b3788 900e333 1637d4b 900e333 1637d4b 900e333 e8b3788 1637d4b 900e333 e8b3788 900e333 e8b3788 900e333 e8b3788 d3a7a20 e8b3788 900e333 e8b3788 900e333 e8b3788 900e333 1293809 900e333 e8b3788 900e333 e8b3788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
from typing import List
from qasem.end_to_end_pipeline import QASemEndToEndPipeline
pipeline = QASemEndToEndPipeline()
description = f"""This is a demo of the QASem Parsing pipeline. It wraps models of three QA-based semantic tasks, composing a comprehensive semi-structured representation of sentence meaning - covering verbal and nominal semantic role labeling together with discourse relations."""
title="QASem Parsing Demo"
examples = [["Both were shot in the confrontation with police and have been recovering in hospital since the attack .", 0.75],
["the construction of the officer 's building was delayed by the lockdown and is expected to continue for at least 10 more months.", 0.7],
["The doctor asked about the progress in Luke 's treatment .", 0.75],
["The Veterinary student was interested in Luke 's treatment of sea animals .", 0.7],
["Some reviewers agreed that the criticism raised by the AC is mostly justified .", 0.6]]
input_sent_box_label = "Insert sentence here, or select from the examples below"
links = """<p style='text-align: center'>
<a href='https://github.com/kleinay/QASem' target='_blank'>Github Repo</a> | <a href='https://arxiv.org/abs/2205.11413' target='_blank'>Paper</a>
</p>"""
def call(sentence, detection_threshold):
outputs = pipeline([sentence], nominalization_detection_threshold=detection_threshold)[0]
def pretty_qadisc_qas(qa_infos) -> List[str]:
if not qa_infos: return []
return [f"{qa['question']} --- {qa['answer']}"
for qa in qa_infos if qa is not None]
def pretty_qasrl_qas(pred_info) -> List[str]:
if not pred_info or not pred_info['QAs']: return []
return [f"{qa['question']} --- {';'.join(qa['answers'])}"
for qa in pred_info['QAs'] if qa is not None]
qasrl_qas = [qa for pred_info in outputs['qasrl'] for qa in pretty_qasrl_qas(pred_info)]
qanom_qas = [qa for pred_info in outputs['qanom'] for qa in pretty_qasrl_qas(pred_info)]
qadisc_qas= pretty_qadisc_qas(outputs['qadiscourse'])
all_qas = ['QASRL:'] + qasrl_qas + ['\nQANom:'] + qanom_qas + ['\nQADiscourse:'] + qadisc_qas
if not qasrl_qas + qanom_qas + qadisc_qas:
pretty_qa_output = "NO QA GENERATED"
else:
pretty_qa_output = "\n".join(all_qas)
# also present highlighted predicates
qasrl_predicates = [pred_info['predicate_idx'] for pred_info in outputs['qasrl']]
qanom_predicates = [pred_info['predicate_idx'] for pred_info in outputs['qanom']]
def color(idx):
if idx in qasrl_predicates : return "aquamarine"
if idx in qanom_predicates : return "aqua"
def word_span(word, idx):
return f'<span style="background-color: {color(idx)}">{word}</span>'
html = '<span>' + ' '.join(word_span(word, idx) for idx, word in enumerate(sentence.split(" "))) + '</span>'
return html, pretty_qa_output , outputs
iface = gr.Interface(fn=call,
inputs=[gr.inputs.Textbox(placeholder=input_sent_box_label, label="Sentence", lines=4),
gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.75, label="Nominalization Detection Threshold")],
outputs=[gr.outputs.HTML(label="Detected Predicates"),
gr.outputs.Textbox(label="Generated QAs"),
gr.outputs.JSON(label="Raw QASemEndToEndPipeline Output")],
title=title,
description=description,
article=links,
examples=examples)
iface.launch() |