File size: 14,846 Bytes
572d5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# app.py
from flask import Flask, render_template, request, session, redirect, url_for
from flask_session import Session
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import nltk
from rouge_score import rouge_scorer
from sacrebleu.metrics import BLEU
from datetime import datetime
import os
import math
import logging
import gc
import time
print("AI ๋ชจ๋ธ๊ณผ ํ๊ฐ ์งํ๋ฅผ ๋ก๋ฉํฉ๋๋ค...")
try:
nltk_data_path = '/tmp/nltk_data'
nltk.download('punkt', download_dir=nltk_data_path, quiet=True)
nltk.data.path.append(nltk_data_path)
model_name = "EleutherAI/polyglot-ko-1.3b"
print(f"๋ชจ๋ธ ๋ก๋ฉ ์ค: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True
)
model.to(device)
# ๋ชจ๋ธ ์ต์ ํ
model.eval()
if torch.cuda.is_available():
model.half()
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
bleu = BLEU()
print("AI ๋ชจ๋ธ ๋ก๋ฉ ๋ฐ ์ต์ ํ ์๋ฃ.")
model_loaded = True
if torch.cuda.is_available():
print(f"GPU ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
except Exception as e:
print(f"๋ชจ๋ธ ๋ก๋ฉ ์ค ์ฌ๊ฐํ ์ค๋ฅ ๋ฐ์: {e}")
model_loaded = False
app = Flask(__name__)
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', os.urandom(24))
Session(app)
log_handler = logging.FileHandler('report_log.txt', encoding='utf-8')
log_handler.setLevel(logging.INFO)
log_formatter = logging.Formatter('%(asctime)s - %(message)s', '%Y-%m-%d %H:%M:%S')
log_handler.setFormatter(log_formatter)
app.logger.addHandler(log_handler)
app.logger.setLevel(logging.INFO)
def validate_ppl_text(text):
text_len = len(text)
if text_len < 2000:
return {"valid": False, "message": f"ํ
์คํธ๊ฐ ๋๋ฌด ์งง์ต๋๋ค. ํ์ฌ {text_len}์, ์ต์ 2000์ ์ด์ ์
๋ ฅํด์ฃผ์ธ์."}
tokens = tokenizer.convert_ids_to_tokens(tokenizer(text, max_length=1024, truncation=True).input_ids)
quadgrams = [tuple(tokens[i:i+4]) for i in range(len(tokens) - 3)]
if len(quadgrams) > 0:
repetition_ratio = 1.0 - (len(set(quadgrams)) / len(quadgrams))
if repetition_ratio > 0.5:
return {"valid": False, "message": "๋ฐ๋ณต๋๋ ๋ด์ฉ์ด ๋๋ฌด ๋ง์ต๋๋ค. ๋ค์ํ ๋ด์ฉ์ ํ
์คํธ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์."}
word_count = len(text.split())
return {"valid": True, "message": f"โ
๊ฒ์ฆ ์๋ฃ: {text_len}์, {word_count}๋จ์ด"}
def calculate_perplexity_logic(text, max_tokens=512, use_sliding_window=False):
encodings = tokenizer(text, return_tensors="pt", max_length=max_tokens, truncation=True)
input_ids = encodings.input_ids[0].to(device)
if len(input_ids) < 10:
raise ValueError("ํ ํฐ ์๊ฐ ๋๋ฌด ์ ์ต๋๋ค (์ต์ 10๊ฐ)")
tokens = tokenizer.convert_ids_to_tokens(input_ids)
repetition_penalties = {}
for n in range(2, 6):
if len(tokens) >= n:
ngrams = [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
if ngrams:
unique_ratio = len(set(ngrams)) / len(ngrams)
repetition_penalties[f'{n}gram'] = 1 - unique_ratio
avg_repetition = sum(repetition_penalties.values()) / len(repetition_penalties) if repetition_penalties else 0
penalty_factor = math.exp(avg_repetition * 3.0)
seq_len = input_ids.size(0)
with torch.no_grad():
if not use_sliding_window or seq_len <= 256:
outputs = model(input_ids.unsqueeze(0), labels=input_ids.unsqueeze(0))
ppl = torch.exp(outputs.loss).item()
else:
max_length = 256
stride = 128
nlls = []
for begin_loc in range(0, seq_len, stride):
end_loc = min(begin_loc + max_length, seq_len)
input_chunk = input_ids[begin_loc:end_loc].unsqueeze(0)
try:
outputs = model(input_chunk, labels=input_chunk)
if outputs.loss is not None and torch.isfinite(outputs.loss):
nlls.append(outputs.loss)
except Exception as chunk_error:
print(f"์ฒญํฌ ์ฒ๋ฆฌ ์ค๋ฅ: {chunk_error}")
continue
if not nlls:
raise RuntimeError("์ ํจํ loss ๊ฐ์ ๊ณ์ฐํ ์ ์์ต๋๋ค")
ppl = torch.exp(torch.mean(torch.stack(nlls))).item()
adjusted_ppl = ppl * penalty_factor
return {
'base_ppl': ppl,
'adjusted_ppl': adjusted_ppl,
'penalty_factor': penalty_factor,
'token_count': len(input_ids)
}
def get_ppl_calculation_mode(text_length):
if text_length > 2000:
return "ultra_fast"
elif text_length > 1000:
return "fast"
else:
return "accurate"
def get_ppl_score(adjusted_ppl):
if adjusted_ppl < 12: return 3.0
elif adjusted_ppl < 18: return 2.5
elif adjusted_ppl < 25: return 2.0
elif adjusted_ppl < 35: return 1.5
else: return 1.0
def cleanup_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@app.route('/', methods=['GET'])
def index():
all_results = session.get('all_results', {})
input_texts = session.get('input_texts', {})
return render_template('index.html', model_loaded=model_loaded, all_results=all_results, input_texts=input_texts)
@app.route('/evaluate', methods=['POST'])
def evaluate_text():
if 'all_results' not in session: session['all_results'] = {}
if 'input_texts' not in session: session['input_texts'] = {}
target_url = request.form.get('target_url')
if target_url: session['all_results']['target_url'] = target_url
metric = request.form.get('metric')
results_to_store = {'metric': metric}
try:
if metric == 'perplexity':
text = request.form.get('ppl_text', '').strip()
session['input_texts']['ppl_text'] = text
validation_result = validate_ppl_text(text)
if not validation_result["valid"]:
results_to_store['error'] = validation_result["message"]
elif not model_loaded:
results_to_store['error'] = "๋ชจ๋ธ์ด ๋ก๋ฉ๋์ง ์์์ต๋๋ค."
else:
try:
cleanup_memory()
calc_mode = get_ppl_calculation_mode(len(text))
start_time = time.time()
if calc_mode == "ultra_fast":
ppl_result = calculate_perplexity_logic(text, max_tokens=256, use_sliding_window=False)
elif calc_mode == "fast":
ppl_result = calculate_perplexity_logic(text, max_tokens=384, use_sliding_window=False)
else:
ppl_result = calculate_perplexity_logic(text, max_tokens=512, use_sliding_window=True)
calc_time = time.time() - start_time
adjusted_ppl = ppl_result['adjusted_ppl']
results_to_store['score_value'] = adjusted_ppl
results_to_store['score_display'] = f"{adjusted_ppl:.4f}"
results_to_store['details'] = {
'base_ppl': f"{ppl_result['base_ppl']:.4f}",
'penalty_factor': f"{ppl_result['penalty_factor']:.4f}",
'token_count': ppl_result['token_count'],
'calc_time': f"{calc_time:.2f}s",
'calc_mode': calc_mode
}
results_to_store['final_score'] = get_ppl_score(adjusted_ppl)
cleanup_memory()
except Exception as ppl_error:
results_to_store['error'] = f"PPL ๊ณ์ฐ ์ค ์ค๋ฅ: {ppl_error}"
session['all_results']['perplexity'] = results_to_store
elif metric == 'rouge':
gen_text = request.form.get('rouge_generated', '').strip()
ref_text = request.form.get('rouge_reference', '').strip()
session['input_texts']['rouge_generated'] = gen_text
session['input_texts']['rouge_reference'] = ref_text
if not gen_text or not ref_text:
results_to_store['error'] = "์์ฑ๋ ์์ฝ๋ฌธ๊ณผ ์ฐธ์กฐ ์์ฝ๋ฌธ์ ๋ชจ๋ ์
๋ ฅํด์ฃผ์ธ์."
else:
scores = scorer.score(ref_text, gen_text)
r1, r2, rL = scores['rouge1'].fmeasure, scores['rouge2'].fmeasure, scores['rougeL'].fmeasure
weighted_avg = (r1 * 0.3 + r2 * 0.3 + rL * 0.4)
len_gen = len(gen_text.split()); len_ref = len(ref_text.split())
length_ratio = len_gen / len_ref if len_ref > 0 else 0
if 0.8 <= length_ratio <= 1.2: length_penalty = 1.0
elif length_ratio < 0.5 or length_ratio > 2.0: length_penalty = 0.8
else: length_penalty = 0.9
final_rouge_score = weighted_avg * length_penalty
results_to_store['score_value'] = final_rouge_score
results_to_store['score_display'] = f"{final_rouge_score:.4f}"
results_to_store['details'] = {'weighted_avg': f"{weighted_avg:.4f}", 'length_penalty': f"{length_penalty:.2f}"}
if final_rouge_score >= 0.65: results_to_store['final_score'] = 3.0
elif final_rouge_score >= 0.55: results_to_store['final_score'] = 2.5
elif final_rouge_score >= 0.45: results_to_store['final_score'] = 2.0
elif final_rouge_score >= 0.35: results_to_store['final_score'] = 1.5
else: results_to_store['final_score'] = 1.0
session['all_results']['rouge'] = results_to_store
elif metric == 'bleu':
gen_text = request.form.get('bleu_generated', '').strip()
ref_text = request.form.get('bleu_reference', '').strip()
session['input_texts']['bleu_generated'] = gen_text
session['input_texts']['bleu_reference'] = ref_text
if not gen_text or not ref_text:
results_to_store['error'] = "์์ฑ๋ ๋ฌธ์ฅ๊ณผ ์ฐธ์กฐ ๋ฌธ์ฅ์ ๋ชจ๋ ์
๋ ฅํด์ฃผ์ธ์."
else:
references = [line.strip() for line in ref_text.split('\n') if line.strip()]
if not references:
results_to_store['error'] = "์ฐธ์กฐ(์ ๋ต) ๋ฒ์ญ๋ฌธ์ ์
๋ ฅํด์ฃผ์ธ์."
else:
bleu_score = bleu.sentence_score(gen_text, references, smooth_method='exp').score / 100
results_to_store['score_value'] = bleu_score
results_to_store['score_display'] = f"{bleu_score:.4f}"
if bleu_score >= 0.55: results_to_store['final_score'] = 3.0
elif bleu_score >= 0.45: results_to_store['final_score'] = 2.5
elif bleu_score >= 0.35: results_to_store['final_score'] = 2.0
elif bleu_score >= 0.25: results_to_store['final_score'] = 1.5
else: results_to_store['final_score'] = 1.0
session['all_results']['bleu'] = results_to_store
elif metric in ['mmlu', 'truthfulqa', 'drop', 'mbpp_humaneval']:
generated_text = request.form.get(f'{metric}_generated', '')
reference_text = request.form.get(f'{metric}_reference', '')
grade = request.form.get(f'{metric}_grade', '')
session['input_texts'][f'{metric}_generated'] = generated_text
session['input_texts'][f'{metric}_reference'] = reference_text
max_scores = {'mmlu': 4, 'truthfulqa': 4, 'drop': 4, 'mbpp_humaneval': 3}
max_score = max_scores[metric]
score_map = {'์': 1.0, '์ฐ': 0.9, '๋ฏธ': 0.8, '์': 0.7, '๊ฐ': 0.6}
if grade and grade in score_map:
final_score = max_score * score_map[grade]
results_to_store['grade'] = grade
results_to_store['final_score'] = final_score
else:
results_to_store['grade'] = None
results_to_store['final_score'] = 0
if not grade:
results_to_store['error'] = "ํ๊ฐ ๋ฑ๊ธ์ ์ ํํด์ฃผ์ธ์."
session['all_results'][metric] = results_to_store
except Exception as e:
results_to_store['error'] = f"๊ณ์ฐ ์ค ์ค๋ฅ ๋ฐ์: {e}"
session['all_results'][metric] = results_to_store
app.logger.error(f"ํ๊ฐ ์ค ์ค๋ฅ - ๋ฉํธ๋ฆญ: {metric}, ์ค๋ฅ: {e}")
session.modified = True
return redirect(url_for('index', _anchor=metric))
@app.route('/report')
def report():
all_results = session.get('all_results', {})
input_texts = session.get('input_texts', {})
try:
target_url = all_results.get('target_url', 'N/A')
total_score = sum(res.get('final_score', 0) for res in all_results.values() if isinstance(res, dict))
log_message = f"๋ณด๊ณ ์ ์์ฑ - ๋์: {target_url}, ์ด์ : {total_score:.2f}/24"
app.logger.info(log_message)
except Exception as e:
app.logger.error(f"๋ก๊ทธ ๊ธฐ๋ก ์ค ์ค๋ฅ ๋ฐ์: {e}")
return render_template('report.html', all_results=all_results, input_texts=input_texts)
@app.route('/reset')
def reset():
session.pop('all_results', None)
session.pop('input_texts', None)
cleanup_memory()
return redirect(url_for('index'))
@app.route('/memory_status')
def memory_status():
status = {}
if torch.cuda.is_available():
status['gpu_allocated'] = f"{torch.cuda.memory_allocated() / 1024**3:.2f} GB"
status['gpu_reserved'] = f"{torch.cuda.memory_reserved() / 1024**3:.2f} GB"
import psutil
process = psutil.Process()
status['ram_usage'] = f"{process.memory_info().rss / 1024**3:.2f} GB"
return status
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |