Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,688 Bytes
0d72411 fe4a4f7 237026a fe4a4f7 0d72411 fe4a4f7 0d72411 fe4a4f7 237026a fe4a4f7 237026a fe4a4f7 237026a fe4a4f7 237026a fe4a4f7 f28b621 fe4a4f7 e35afc0 fe4a4f7 0d72411 f28b621 0d72411 ec448a7 0d72411 fe4a4f7 237026a f28b621 fe4a4f7 f28b621 fe4a4f7 f28b621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import datetime
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np
import matplotlib.pyplot as plt
import requests
import json
from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain_openai import AzureOpenAIEmbeddings
from langchain.llms import OpenAI
from langchain_openai import AzureChatOpenAI
from langchain import hub
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableParallel
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
embeddings = AzureOpenAIEmbeddings(
deployment="embedding",
model="text-embedding-ada-002",
azure_endpoint=st.secrets["endpoint1"],
)
llm = AzureChatOpenAI(
deployment_name="gpt4_small",
openai_api_version="2023-12-01-preview",
azure_endpoint=st.secrets["endpoint2"],
openai_api_key=st.secrets["key2"],
openai_api_type="azure",
temperature=0.
)
@st.cache_data
def get_feeds_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Loaded data")
return data
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
dateval = "27-Jun-2023"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)
@st.cache_data
def get_embedding_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Fetched data from API!")
return data
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
e2d = get_embedding_data(url)
# e2d, _, _, _, _ = get_embedding_data(url)
ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], []
for nc in range(num_chunks):
for i in range(len(gal_feeds[nc].entries)):
text = gal_feeds[nc].entries[i].summary
text = text.replace('\n', ' ')
text = text.replace('\\', '')
all_text.append(text)
all_titles.append(gal_feeds[nc].entries[i].title)
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
all_links.append(gal_feeds[nc].entries[i].links[1].href)
all_authors.append(gal_feeds[nc].entries[i].authors)
d = arxiv_ada_embeddings.shape[1] # dimension
nb = arxiv_ada_embeddings.shape[0] # database size
xb = arxiv_ada_embeddings.astype('float32')
index = faiss.IndexFlatL2(d)
index.add(xb)
def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'):
"""
Query ArXiv to return search results for a particular query
Parameters
----------
query: str
query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable.
max_results: int, default = 10
number of results to return. numbers > 1000 generally lead to timeouts
start: int, default = 0
start index for results reported. use this if you're interested in running chunks.
Returns
-------
feed: dict
object containing requested results parsed with feedparser
Notes
-----
add functionality for chunk parsing, as well as storage and retreival
"""
base_url = 'http://export.arxiv.org/api/query?';
query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query,
start,
max_results,sort_by,sort_order)
response = urllib.request.urlopen(base_url+query).read()
feed = feedparser.parse(response)
return feed
def find_papers_by_author(auth_name):
doc_ids = []
for doc_id in range(len(all_authors)):
for auth_id in range(len(all_authors[doc_id])):
if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower():
print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name'])
doc_ids.append(doc_id)
return doc_ids
def faiss_based_indices(input_vector, nindex=10):
xq = input_vector.reshape(-1,1).T.astype('float32')
D, I = index.search(xq, nindex)
return I[0], D[0]
def list_similar_papers_v2(model_data,
doc_id = [], input_type = 'doc_id',
show_authors = False, show_summary = False,
return_n = 10):
arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data
if input_type == 'doc_id':
print('Doc ID: ',doc_id,', title: ',all_titles[doc_id])
# inferred_vector = model.infer_vector(train_corpus[doc_id].words)
inferred_vector = arxiv_ada_embeddings[doc_id,0:]
start_range = 1
elif input_type == 'arxiv_id':
print('ArXiv id: ',doc_id)
arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id))
if len(arxiv_query_feed.entries) == 0:
print('error: arxiv id not found.')
return
else:
print('Title: '+arxiv_query_feed.entries[0].title)
inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary))
start_range = 0
elif input_type == 'keywords':
inferred_vector = np.array(embeddings.embed_query(doc_id))
start_range = 0
else:
print('unrecognized input type.')
return
sims, dists = faiss_based_indices(inferred_vector, return_n+2)
textstr = ''
abstracts_relevant = []
fhdrs = []
for i in range(start_range,start_range+return_n):
abstracts_relevant.append(all_text[sims[i]])
fhdr = str(sims[i])+'_'+all_authors[sims[i]][0]['name'].split()[-1] + all_arxivid[sims[i]][0:2] +'_'+ all_arxivid[sims[i]]
fhdrs.append(fhdr)
textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+') \n'
textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+') \n'
if show_authors == True:
textstr = textstr + '**Authors:** '
temp = all_authors[sims[i]]
for ak in range(len(temp)):
if ak < len(temp)-1:
textstr = textstr + temp[ak].name + ', '
else:
textstr = textstr + temp[ak].name + ' \n'
if show_summary == True:
textstr = textstr + '**Summary:** '
text = all_text[sims[i]]
text = text.replace('\n', ' ')
textstr = textstr + summarizer.summarize(text) + ' \n'
if show_authors == True or show_summary == True:
textstr = textstr + ' '
textstr = textstr + ' \n'
return textstr, abstracts_relevant, fhdrs, sims
def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=None):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai.api_key}",
}
data = {
"model": model,
"messages": messages,
"temperature": temperature,
}
if max_tokens is not None:
data["max_tokens"] = max_tokens
response = requests.post(API_ENDPOINT, headers=headers, data=json.dumps(data))
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
raise Exception(f"Error {response.status_code}: {response.text}")
model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
def get_textstr(i, show_authors=False, show_summary=False):
textstr = ''
textstr = '**'+ all_titles[i] +'** \n'
textstr = textstr + '**ArXiv:** ['+all_arxivid[i]+'](https://arxiv.org/abs/'+all_arxivid[i]+') \n'
if show_authors == True:
textstr = textstr + '**Authors:** '
temp = all_authors[i]
for ak in range(len(temp)):
if ak < len(temp)-1:
textstr = textstr + temp[ak].name + ', '
else:
textstr = textstr + temp[ak].name + ' \n'
if show_summary == True:
textstr = textstr + '**Summary:** '
text = all_text[i]
text = text.replace('\n', ' ')
textstr = textstr + summarizer.summarize(text) + ' \n'
if show_authors == True or show_summary == True:
textstr = textstr + ' '
textstr = textstr + ' \n'
return textstr
def run_rag(query, return_n = 10, show_authors = True, show_summary = True):
sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
doc_id = query,
input_type='keywords',
show_authors = show_authors, show_summary = show_summary,
return_n = return_n)
temp_abst = ''
loaders = []
for i in range(len(absts)):
temp_abst = absts[i]
try:
text_file = open("absts/"+fhdrs[i]+".txt", "w")
except:
os.mkdir('absts')
text_file = open("absts/"+fhdrs[i]+".txt", "w")
n = text_file.write(temp_abst)
text_file.close()
loader = TextLoader("absts/"+fhdrs[i]+".txt")
loaders.append(loader)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
retriever = vectorstore.as_retriever()
template = """You are an assistant with expertise in astrophysics for question-answering tasks.
Use the following pieces of retrieved context from the literature to answer the question.
If you don't know the answer, just say that you don't know.
Use six sentences maximum and keep the answer concise.
{context}
Question: {question}
Answer:"""
custom_rag_prompt = PromptTemplate.from_template(template)
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| custom_rag_prompt
| llm
| StrOutputParser()
)
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
rag_answer = rag_chain_with_source.invoke(query)
st.markdown('### User query: '+query)
st.markdown(rag_answer['answer'])
opstr = '#### Primary sources: \n'
srcnames = []
for i in range(len(rag_answer['context'])):
srcnames.append(rag_answer['context'][0].metadata['source'])
srcnames = np.unique(srcnames)
srcindices = []
for i in range(len(srcnames)):
temp = srcnames[i].split('_')[1]
srcindices.append(int(srcnames[i].split('_')[0].split('/')[1]))
if int(temp[-2:]) < 40:
temp = temp[0:-2] + ' et al. 20' + temp[-2:]
else:
temp = temp[0:-2] + ' et al. 19' + temp[-2:]
temp = '['+temp+']('+all_links[int(srcnames[i].split('_')[0].split('/')[1])]+')'
st.markdown(temp)
abs_indices = np.array(srcindices)
fig = plt.figure(figsize=(9,9))
plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
plt.title('localization for question: '+query)
st.pyplot(fig)
st.markdown('\n #### List of relevant papers:')
st.markdown(sims)
return rag_answer
st.title('ArXiv-based question answering')
st.markdown('[Includes papers up to: `'+dateval+'`]')
st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. You might need to wait for a few seconds for the GPT-4 query to return an answer (check top right corner to see if it is still running).')
st.markdown('The answers are followed by relevant source(s) used in the answer, a graph showing which part of the astro-ph.GA manifold it drew the answer from (tightly clustered points generally indicate high quality/consensus answers) followed by a bunch of relevant papers used by the RAG to compose the answer.')
st.markdown('If this does not satisfactorily answer your question or rambles too much, you can also try the older `qa_sources_v1` page.')
query = st.text_input('Your question here:',
value="What causes galaxy quenching at high redshifts?")
return_n = st.slider('How many papers should I show?', 1, 30, 10)
sims = run_rag(query, return_n = return_n)
|