File size: 13,688 Bytes
0d72411
 
fe4a4f7
 
 
 
 
237026a
fe4a4f7
 
 
 
 
 
0d72411
fe4a4f7
 
0d72411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4a4f7
 
 
 
237026a
 
 
 
fe4a4f7
 
237026a
 
 
 
 
fe4a4f7
 
 
 
 
237026a
 
 
fe4a4f7
 
 
237026a
 
 
 
fe4a4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28b621
fe4a4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e35afc0
fe4a4f7
 
0d72411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28b621
0d72411
 
 
 
 
ec448a7
0d72411
 
 
 
 
 
 
fe4a4f7
 
237026a
f28b621
 
 
fe4a4f7
f28b621
 
 
fe4a4f7
f28b621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import datetime
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np
import matplotlib.pyplot as plt
import requests
import json

from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain_openai import AzureOpenAIEmbeddings
from langchain.llms import OpenAI
from langchain_openai import AzureChatOpenAI
from langchain import hub
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableParallel
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma

os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
os.environ["OPENAI_API_VERSION"] = "2023-05-15"

embeddings = AzureOpenAIEmbeddings(
    deployment="embedding",
    model="text-embedding-ada-002",
    azure_endpoint=st.secrets["endpoint1"],
)

llm = AzureChatOpenAI(
        deployment_name="gpt4_small",
        openai_api_version="2023-12-01-preview",
        azure_endpoint=st.secrets["endpoint2"],
        openai_api_key=st.secrets["key2"],
        openai_api_type="azure",
        temperature=0.
    )


@st.cache_data
def get_feeds_data(url):
    # data = cp.load(urlopen(url))
    with open(url, "rb") as fp:
        data = pickle.load(fp)
    st.sidebar.success("Loaded data")
    return data

# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
dateval = "27-Jun-2023"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)

@st.cache_data
def get_embedding_data(url):
    # data = cp.load(urlopen(url))
    with open(url, "rb") as fp:
        data = pickle.load(fp)
    st.sidebar.success("Fetched data from API!")
    return data

# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
e2d = get_embedding_data(url)
# e2d, _, _, _, _ = get_embedding_data(url)

ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], []

for nc in range(num_chunks):

    for i in range(len(gal_feeds[nc].entries)):
        text = gal_feeds[nc].entries[i].summary
        text = text.replace('\n', ' ')
        text = text.replace('\\', '')
        all_text.append(text)
        all_titles.append(gal_feeds[nc].entries[i].title)
        all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
        all_links.append(gal_feeds[nc].entries[i].links[1].href)
        all_authors.append(gal_feeds[nc].entries[i].authors)

d = arxiv_ada_embeddings.shape[1]                           # dimension
nb = arxiv_ada_embeddings.shape[0]                      # database size
xb = arxiv_ada_embeddings.astype('float32')
index = faiss.IndexFlatL2(d)
index.add(xb)

def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'):
    """
        Query ArXiv to return search results for a particular query
        Parameters
        ----------
        query: str
            query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable.
        max_results: int, default = 10
            number of results to return. numbers > 1000 generally lead to timeouts
        start: int, default = 0
            start index for results reported. use this if you're interested in running chunks.
        Returns
        -------
        feed: dict
            object containing requested results parsed with feedparser
        Notes
        -----
            add functionality for chunk parsing, as well as storage and retreival
        """

    base_url = 'http://export.arxiv.org/api/query?';
    query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query,
                                                     start,
                                                     max_results,sort_by,sort_order)

    response = urllib.request.urlopen(base_url+query).read()
    feed = feedparser.parse(response)
    return feed

def find_papers_by_author(auth_name):

    doc_ids = []
    for doc_id in range(len(all_authors)):
        for auth_id in range(len(all_authors[doc_id])):
            if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower():
                print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name'])
                doc_ids.append(doc_id)

    return doc_ids

def faiss_based_indices(input_vector, nindex=10):
    xq = input_vector.reshape(-1,1).T.astype('float32')
    D, I = index.search(xq, nindex)
    return I[0], D[0]

def list_similar_papers_v2(model_data,
                        doc_id = [], input_type = 'doc_id',
                        show_authors = False, show_summary = False,
                        return_n = 10):

    arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data

    if input_type == 'doc_id':
        print('Doc ID: ',doc_id,', title: ',all_titles[doc_id])
#         inferred_vector = model.infer_vector(train_corpus[doc_id].words)
        inferred_vector = arxiv_ada_embeddings[doc_id,0:]
        start_range = 1
    elif input_type == 'arxiv_id':
        print('ArXiv id: ',doc_id)
        arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id))
        if len(arxiv_query_feed.entries) == 0:
            print('error: arxiv id not found.')
            return
        else:
            print('Title: '+arxiv_query_feed.entries[0].title)
            inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary))
        start_range = 0
    elif input_type == 'keywords':
        inferred_vector = np.array(embeddings.embed_query(doc_id))
        start_range = 0
    else:
        print('unrecognized input type.')
        return

    sims, dists = faiss_based_indices(inferred_vector, return_n+2)
    textstr = ''
    abstracts_relevant = []
    fhdrs = []

    for i in range(start_range,start_range+return_n):

        abstracts_relevant.append(all_text[sims[i]])
        fhdr = str(sims[i])+'_'+all_authors[sims[i]][0]['name'].split()[-1] + all_arxivid[sims[i]][0:2] +'_'+ all_arxivid[sims[i]]
        fhdrs.append(fhdr)
        textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+')   \n'
        textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+')  \n'
        if show_authors == True:
            textstr = textstr + '**Authors:**  '
            temp = all_authors[sims[i]]
            for ak in range(len(temp)):
                if ak < len(temp)-1:
                    textstr = textstr + temp[ak].name + ', '
                else:
                    textstr = textstr + temp[ak].name + '   \n'
        if show_summary == True:
            textstr = textstr + '**Summary:**  '
            text = all_text[sims[i]]
            text = text.replace('\n', ' ')
            textstr = textstr + summarizer.summarize(text) + '  \n'
        if show_authors == True or show_summary == True:
            textstr = textstr + ' '
        textstr = textstr + '  \n'
    return textstr, abstracts_relevant, fhdrs, sims


def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=None):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai.api_key}",
    }

    data = {
        "model": model,
        "messages": messages,
        "temperature": temperature,
    }

    if max_tokens is not None:
        data["max_tokens"] = max_tokens
    response = requests.post(API_ENDPOINT, headers=headers, data=json.dumps(data))
    if response.status_code == 200:
        return response.json()["choices"][0]["message"]["content"]
    else:
        raise Exception(f"Error {response.status_code}: {response.text}")

model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

def get_textstr(i, show_authors=False, show_summary=False):
    textstr = ''
    textstr = '**'+ all_titles[i] +'**   \n'
    textstr = textstr + '**ArXiv:** ['+all_arxivid[i]+'](https://arxiv.org/abs/'+all_arxivid[i]+')  \n'
    if show_authors == True:
        textstr = textstr + '**Authors:**  '
        temp = all_authors[i]
        for ak in range(len(temp)):
            if ak < len(temp)-1:
                textstr = textstr + temp[ak].name + ', '
            else:
                textstr = textstr + temp[ak].name + '   \n'
    if show_summary == True:
        textstr = textstr + '**Summary:**  '
        text = all_text[i]
        text = text.replace('\n', ' ')
        textstr = textstr + summarizer.summarize(text) + '  \n'
    if show_authors == True or show_summary == True:
        textstr = textstr + ' '
    textstr = textstr + '  \n'

    return textstr


def run_rag(query, return_n = 10, show_authors = True, show_summary = True):

    sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
                                  doc_id = query,
                                  input_type='keywords',
                                  show_authors = show_authors, show_summary = show_summary,
                                  return_n = return_n)

    temp_abst = ''
    loaders = []
    for i in range(len(absts)):
        temp_abst = absts[i]

        try:
            text_file = open("absts/"+fhdrs[i]+".txt", "w")
        except:
            os.mkdir('absts')
            text_file = open("absts/"+fhdrs[i]+".txt", "w")
        n = text_file.write(temp_abst)
        text_file.close()
        loader = TextLoader("absts/"+fhdrs[i]+".txt")
        loaders.append(loader)

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
    splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
    retriever = vectorstore.as_retriever()

    template = """You are an assistant with expertise in astrophysics for question-answering tasks.
    Use the following pieces of retrieved context from the literature to answer the question.
    If you don't know the answer, just say that you don't know.
    Use six sentences maximum and keep the answer concise.

    {context}

    Question: {question}

    Answer:"""
    custom_rag_prompt = PromptTemplate.from_template(template)

    rag_chain_from_docs = (
        RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
        | custom_rag_prompt
        | llm
        | StrOutputParser()
    )

    rag_chain_with_source = RunnableParallel(
        {"context": retriever, "question": RunnablePassthrough()}
    ).assign(answer=rag_chain_from_docs)

    rag_answer = rag_chain_with_source.invoke(query)

    st.markdown('### User query: '+query)

    st.markdown(rag_answer['answer'])
    opstr = '#### Primary sources: \n'
    srcnames = []
    for i in range(len(rag_answer['context'])):
        srcnames.append(rag_answer['context'][0].metadata['source'])

    srcnames = np.unique(srcnames)
    srcindices = []
    for i in range(len(srcnames)):
        temp = srcnames[i].split('_')[1]
        srcindices.append(int(srcnames[i].split('_')[0].split('/')[1]))
        if int(temp[-2:]) < 40:
            temp = temp[0:-2] + ' et al. 20' + temp[-2:]
        else:
            temp = temp[0:-2] + ' et al. 19' + temp[-2:]
        temp = '['+temp+']('+all_links[int(srcnames[i].split('_')[0].split('/')[1])]+')'
        st.markdown(temp)
    abs_indices = np.array(srcindices)

    fig = plt.figure(figsize=(9,9))
    plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
    plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
    plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
    plt.title('localization for question: '+query)
    st.pyplot(fig)

    st.markdown('\n #### List of relevant papers:')
    st.markdown(sims)

    return rag_answer


st.title('ArXiv-based question answering')
st.markdown('[Includes papers up to: `'+dateval+'`]')
st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. You might need to wait for a few seconds for the GPT-4 query to return an answer (check top right corner to see if it is still running).')
st.markdown('The answers are followed by relevant source(s) used in the answer, a graph showing which part of the astro-ph.GA manifold it drew the answer from (tightly clustered points generally indicate high quality/consensus answers) followed by a bunch of relevant papers used by the RAG to compose the answer.')
st.markdown('If this does not satisfactorily answer your question or rambles too much, you can also try the older `qa_sources_v1` page.')

query = st.text_input('Your question here:',
value="What causes galaxy quenching at high redshifts?")
return_n = st.slider('How many papers should I show?', 1, 30, 10)

sims = run_rag(query, return_n = return_n)