File size: 5,586 Bytes
ebe81f3 6da0437 ebe81f3 8234570 ebe81f3 69c1f1a ebe81f3 69c1f1a ebe81f3 69c1f1a ebe81f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import subprocess
import tempfile
import time
from pathlib import Path
import cv2
import gradio as gr
import torch
from inferer import Inferer
pipeline = Inferer("nateraw/yolov6s", device='cuda')
print(f"GPU on? {'🟢' if pipeline.device.type != 'cpu' else '🔴'}")
def fn_image(image, conf_thres, iou_thres):
return pipeline(image, conf_thres, iou_thres)
def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
suffix = Path(video_file).suffix
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
subprocess.call(
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
)
# Reader of clip file
cap = cv2.VideoCapture(clip_temp_file.name)
# This is an intermediary temp file where we'll write the video to
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# with ffmpeg at the end of the function here.
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
num_frames = 0
max_frames = duration * 30
while cap.isOpened():
try:
ret, frame = cap.read()
if not ret:
break
except Exception as e:
print(e)
continue
print("FRAME DTYPE", type(frame))
out.write(pipeline(frame, conf_thres, iou_thres))
num_frames += 1
print("Processed {} frames".format(num_frames))
if num_frames == max_frames:
break
out.release()
# Aforementioned hackiness
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
return out_file.name
torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09/0.jpg', '1.jpg')
torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg')
torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg')
image_interface = gr.Interface(
fn=fn_image,
inputs=[
"image",
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
],
outputs=gr.Image(type="file"),
examples=[["1.jpg", 0.5, 0.5], ["2.jpg", 0.25, 0.45], ["3.jpg", 0.25, 0.45]],
title="YOLOv6",
description=(
"Gradio demo for YOLOv6 for object detection on images. To use it, simply upload your image or click one of the"
" examples to load them. Read more at the links below."
),
article=(
"<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
" <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
" badge'></center></div>"
),
allow_flagging=False,
allow_screenshot=False,
)
video_interface = gr.Interface(
fn=fn_video,
inputs=[
gr.Video(type="file"),
gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
gr.Slider(0, 10, value=0, label="Start Second", step=1),
gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=3, label="Duration", step=1),
],
outputs=gr.Video(type="file", format="mp4"),
examples=[
["example_1.mp4", 0.25, 0.45, 0, 2],
["example_2.mp4", 0.25, 0.45, 5, 3],
["example_3.mp4", 0.25, 0.45, 6, 3],
],
title="YOLOv6",
description=(
"Gradio demo for YOLOv6 for object detection on videos. To use it, simply upload your video or click one of the"
" examples to load them. Read more at the links below."
),
article=(
"<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
" <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
" badge'></center></div>"
),
allow_flagging=False,
allow_screenshot=False,
)
webcam_interface = gr.Interface(
fn_image,
inputs=[
gr.Image(source='webcam', streaming=True),
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
],
outputs=gr.Image(type="file"),
live=True,
title="YOLOv6",
description=(
"Gradio demo for YOLOv6 for object detection on real time webcam. To use it, simply allow the browser to access"
" your webcam. Read more at the links below."
),
article=(
"<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
" <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
" badge'></center></div>"
),
allow_flagging=False,
allow_screenshot=False,
)
if __name__ == "__main__":
gr.TabbedInterface(
[video_interface, image_interface, webcam_interface],
["Run on Videos!", "Run on Images!", "Run on Webcam!"],
).launch()
|