File size: 13,167 Bytes
ae8baa1
 
 
 
 
 
 
68148c4
ae8baa1
 
 
 
 
 
 
 
 
339c8c8
 
ae8baa1
ce11694
ae8baa1
 
 
68148c4
ae8baa1
 
 
 
 
 
 
 
d6e06bd
ae8baa1
d6e06bd
ae8baa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e06bd
ae8baa1
 
 
 
 
 
 
d6e06bd
ae8baa1
d6e06bd
ae8baa1
 
 
 
d6e06bd
ae8baa1
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e06bd
ae8baa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce11694
 
367c50e
ce11694
367c50e
ce11694
 
 
 
 
 
 
799e5e1
ce11694
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

from glob import glob
import hydra
import argparse
import time
from pathlib import Path
import math
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
import pandas as pd
import cv2
from ultralytics.yolo.v8.detect.deep_sort_pytorch.utils.parser import get_config
from ultralytics.yolo.v8.detect.deep_sort_pytorch.deep_sort import DeepSort
from collections import deque
import numpy as np
import csv
import matplotlib.pyplot as plt
import seaborn as sns 
import gradio as gr



palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
deq = {}
indices = [0] * 100
c = 0
num = 1
f = open('/pulse.csv', "w+")
f.close()
with open('/pulse.csv', 'a') as f:
# create the csv writer
    writer = csv.writer(f)

    header = ['time', 'pulse']
    writer.writerow(header)
    

deepsort = None

object_counter = {}

speed_line_queue = {}
def estimatespeed(Location1, Location2, h, w):
    #Euclidean Distance Formula
    d_pixel = math.sqrt(math.pow(Location2[0] - Location1[0], 2) + math.pow(Location2[1] - Location1[1], 2))
    # defining thr pixels per meter
    ppm = max(h, w) // 10
    d_meters = d_pixel/ppm
    time_constant = 15*3.6
    #distance = speed/time
    speed = d_meters * time_constant

    return int(speed)
def init_tracker():
    global deepsort
    cfg_deep = get_config()
    cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")

    deepsort= DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
                            max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
                            nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
                            max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
                            use_cuda=True)
##########################################################################################
def xyxy_to_xywh(*xyxy):
    """" Calculates the relative bounding box from absolute pixel values. """
    bbox_left = min([xyxy[0].item(), xyxy[2].item()])
    bbox_top = min([xyxy[1].item(), xyxy[3].item()])
    bbox_w = abs(xyxy[0].item() - xyxy[2].item())
    bbox_h = abs(xyxy[1].item() - xyxy[3].item())
    x_c = (bbox_left + bbox_w / 2)
    y_c = (bbox_top + bbox_h / 2)
    w = bbox_w
    h = bbox_h
    return x_c, y_c, w, h


def compute_color_for_labels(label):
    """
    Simple function that adds fixed color depending on the class
    """
    if label == 7: #truck
        color = (85,45,255)
    elif label == 2: # Car
        color = (222,82,175)
    elif label == 3:  # Motorcycle
        color = (0, 204, 255)
    elif label == 5:  # Bus
        color = (0, 149, 255)
    else:
        color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
    return tuple(color)

def draw_border(img, pt1, pt2, color, thickness, r, d):
    x1,y1 = pt1
    x2,y2 = pt2
    # Top left
    cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
    cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
    cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
    # Top right
    cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
    cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
    cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
    # Bottom left
    cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
    cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
    cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
    # Bottom right
    cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
    cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
    cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)

    cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA)
    cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA)
    
    cv2.circle(img, (x1 +r, y1+r), 2, color, 12)
    cv2.circle(img, (x2 -r, y1+r), 2, color, 12)
    cv2.circle(img, (x1 +r, y2-r), 2, color, 12)
    cv2.circle(img, (x2 -r, y2-r), 2, color, 12)
    
    return img

def UI_box(x, img, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]

        img = draw_border(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color, 1, 8, 2)

        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)


def ccw(A,B,C):
    return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])


def draw_boxes(img, bbox, names,object_id,writer, writer2, identities=None, offset=(0, 0)):
    height, width, _ = img.shape
    # remove tracked point from buffer if object is lost
    global c
    
    for key in list(deq):
        if key not in identities:
            deq.pop(key)

    weights = [0,0,int(6.72),int(1.638),0,30,0,int(18.75)]
    speeds = [0] * 8

    for i, box in enumerate(bbox):
        obj_name = names[object_id[i]]
        x1, y1, x2, y2 = [int(i) for i in box]
        x1 += offset[0]
        x2 += offset[0]
        y1 += offset[1]
        y2 += offset[1]

        # code to find center of bottom edge
        center = (int((x2+x1)/ 2), int((y2+y2)/2))

        # get ID of object

        id = int(identities[i]) if identities is not None else 0

        # create new buffer for new object
        if id not in deq:  
            deq[id] = deque(maxlen= 64)
            if object_id[i] in [2, 3, 5, 7]:
              c +=1
              indices[id] = c
            speed_line_queue[id] = []
        color = compute_color_for_labels(object_id[i])
        
        
        label = '{}{:d}'.format("", indices[id]) + ":"+ '%s' % (obj_name)
        

        # add center to buffer
        deq[id].appendleft(center)
        if len(deq[id]) >= 2:
            object_speed = estimatespeed(deq[id][1], deq[id][0], x2-x1, y2-y1)
            speed_line_queue[id].append(object_speed)
            if obj_name not in object_counter:
                    object_counter[obj_name] = 1
        
        #motorcycle_weight = 1.638
        #car_weight = 6.72
        #truck_weight = 18.75
        #bus_weight = 30

        try:
            spd = sum(speed_line_queue[id])//len(speed_line_queue[id])
            speeds[object_id[i]] += spd
            label = label + " v=" + str(spd) + " m=" + str(weights[object_id[i]])
            writer2.writerow([str(indices[id]), obj_name, str(spd), str(weights[object_id[i]])])

        except:
            pass
        UI_box(box, img, label=label, color=color, line_thickness=2)
    #cv2.putText(img, f"{speeds}", (500, 50), 0, 1, [0, 255, 0], thickness=2, lineType=cv2.LINE_AA)
    t = time.localtime()
    current_time = time.strftime("%H:%M:%S %d.%m.%Y", t)
    pulse = sum(np.multiply(speeds, weights))
    
    # write a row to the csv file
    writer.writerow([f"{current_time}", f"{pulse}"])

    cv2.putText(img, f"pulse: {pulse}", (500, 50), 0, 1, [0, 255, 0], thickness=2, lineType=cv2.LINE_AA)
    #for i, object_speed in enumerate(speeds):
    #  object_speed = sum(object_speed)*weights[i]
    
    
    
    return img


class DetectionPredictor(BasePredictor):

    def get_annotator(self, img):
        return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))

    def preprocess(self, img):
        img = torch.from_numpy(img).to(self.model.device)
        img = img.half() if self.model.fp16 else img.float()  # uint8 to fp16/32
        img /= 255  # 0 - 255 to 0.0 - 1.0
        return img

    def postprocess(self, preds, img, orig_img):
        preds = ops.non_max_suppression(preds,
                                        self.args.conf,
                                        self.args.iou,
                                        classes = [2, 3, 5, 7],
                                        agnostic=self.args.agnostic_nms,
                                        max_det=self.args.max_det)

        for i, pred in enumerate(preds):
            shape = orig_img[i].shape if self.webcam else orig_img.shape
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()

        return preds

    def write_results(self, idx, preds, batch):
        global num
        p, im, im0 = batch
        all_outputs = []
        log_string = ""
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        self.seen += 1
        im0 = im0.copy()
        if self.webcam:  # batch_size >= 1
            log_string += f'{idx}: '
            frame = self.dataset.count
        else:
            frame = getattr(self.dataset, 'frame', 0)

        self.data_path = p
        save_path = str(self.save_dir / p.name)  # im.jpg
        self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
        log_string += '%gx%g ' % im.shape[2:]  # print string
        self.annotator = self.get_annotator(im0)

        det = preds[idx]
        all_outputs.append(det)
        if len(det) == 0:
            return log_string

        count = 0
        for c in det[:, 5].unique():
            count += 1
            n = (det[:, 5] == c).sum()  # detections per class
            cv2.putText(im0, f"{n} {self.model.names[int(c)]}", (11, count*50), 0, 1, [0, 255, 0], thickness=2, lineType=cv2.LINE_AA)
            log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
        # write
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        xywh_bboxs = []
        confs = []
        oids = []
        outputs = []
        for *xyxy, conf, cls in reversed(det):
            x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
            xywh_obj = [x_c, y_c, bbox_w, bbox_h]
            xywh_bboxs.append(xywh_obj)
            confs.append([conf.item()])
            oids.append(int(cls))
        xywhs = torch.Tensor(xywh_bboxs)
        confss = torch.Tensor(confs)
          
        outputs = deepsort.update(xywhs, confss, oids, im0)
        
        with open('/pulse.csv', 'a') as f:
            # create the csv writer
                writer = csv.writer(f)
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -2]
                    object_id = outputs[:, -1]
            
                    f2 = open('/vehicles_data.csv', "w+")
                    f2.close()
                    with open('/vehicles_data.csv', 'a') as f:
                        writer2 = csv.writer(f)
                        header = ['id', 'class', 'speed', 'weight']
                        writer2.writerow(header)
                        draw_boxes(im0, bbox_xyxy, self.model.names, object_id,writer, writer2, identities)
        df = pd.read_csv("/pulse.csv")
        df['time'] = pd.to_datetime(df['time'], format = '%H:%M:%S  %d.%m.%Y')
        

        df.index = df['time']
        del df['time']
        
        try:
            fig, ax = plt.subplots()
            #plt.clf()
            sns.lineplot(df)
            #ax.set_xticklabels([t.get_text().split(".")[0] for t in ax.get_xticklabels()])
            ax.set_xticklabels([pd.to_datetime(t.get_text()).strftime('%H:%M:%S') for t in ax.get_xticklabels()])
            plt.ylabel('Pulse')
            plt.xlabel('time')
            plt.savefig(f'/time_series/figure_{num:010d}.png')
            num += 1
        except:
          log_string += f'An error occured while saving figure_{num:010d}.png, '
      
        return log_string


@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
    init_tracker()
    cfg.model = cfg.model or "yolov8n.pt"
    cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2)  # check image size
    cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
    predictor = DetectionPredictor(cfg)
    predictor()

    
#model = Yolov4(weight_path="yolov4.weights", class_name_path='coco_classes.txt')
def gradio_wrapper(img):
    result = predict(model="YOLOv8-real-time/ultralytics/yolo/v8/detect/yolov8x6.pt", source=img)
    #print(np.shape(img))
    return result
demo = gr.Interface(
    gradio_wrapper,
    #gr.Image(source="webcam", streaming=True, flip=True),
    gr.Image(source="webcam", streaming=True),
    "image",
    live=True
)

demo.launch()