File size: 1,417 Bytes
e71e3dd
 
858e6e8
e71e3dd
 
 
 
 
 
831abcc
858e6e8
 
e71e3dd
24c6141
 
 
 
e71e3dd
24c6141
 
7a0cf24
24c6141
 
e71e3dd
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f21ea
7a0cf24
f3f21ea
 
e71e3dd
 
5049d16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from typing import List, Tuple
import torch
import nltk
from SciAssist import DatasetExtraction

device = "gpu" if torch.cuda.is_available() else "cpu"
de_pipeline = DatasetExtraction(os_name="nt")


def de_for_str(input):
    list_input = nltk.sent_tokenize(input)
    results = de_pipeline.extract(list_input, type="str", save_results=False)

    # output = []
    # for res in results["dataset_mentions"]:
    #     output.append(f"{res}\n\n")
    # return "".join(output)

    output = []
    for mention_pair in results["dataset_mentions"]:
        output.append((mention_pair[0], mention_pair[1]))
        output.append(("\n\n", None))
    return output

def de_for_file(input):
    if input == None:
        return None
    filename = input.name
    # Identify the format of input and parse reference strings
    if filename[-4:] == ".txt":
        results = de_pipeline.extract(filename, type="txt", save_results=False)
    elif filename[-4:] == ".pdf":
        results = de_pipeline.extract(filename, type="pdf", save_results=False)
    else:
        return [("File Format Error !", None)]

    output = []
    for mention_pair in results["dataset_mentions"]:
        output.append((mention_pair[0], mention_pair[1]))
        output.append(("\n\n", None))
    return output


de_str_example = "BAKIS incorporates information derived from the bank balance sheets and supervisory reports of all German banks ."