File size: 13,237 Bytes
d59aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import logging
import six

import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence

from .e2e_asr_common import get_vgg2l_odim
from .nets_utils import make_pad_mask, to_device


class RNNP(torch.nn.Module):
    """RNN with projection layer module

    :param int idim: dimension of inputs
    :param int elayers: number of encoder layers
    :param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
    :param int hdim: number of projection units
    :param np.ndarray subsample: list of subsampling numbers
    :param float dropout: dropout rate
    :param str typ: The RNN type
    """

    def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"):
        super(RNNP, self).__init__()
        bidir = typ[0] == "b"
        for i in six.moves.range(elayers):
            if i == 0:
                inputdim = idim
            else:
                inputdim = hdim
            rnn = torch.nn.LSTM(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir,
                                batch_first=True) if "lstm" in typ \
                else torch.nn.GRU(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir, batch_first=True)
            setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn)
            # bottleneck layer to merge
            if bidir:
                setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim))
            else:
                setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim))

        self.elayers = elayers
        self.cdim = cdim
        self.subsample = subsample
        self.typ = typ
        self.bidir = bidir

    def forward(self, xs_pad, ilens, prev_state=None):
        """RNNP forward

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor prev_state: batch of previous RNN states
        :return: batch of hidden state sequences (B, Tmax, hdim)
        :rtype: torch.Tensor
        """
        logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        elayer_states = []
        for layer in six.moves.range(self.elayers):
            xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True, enforce_sorted=False)
            rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer))
            rnn.flatten_parameters()
            if prev_state is not None and rnn.bidirectional:
                prev_state = reset_backward_rnn_state(prev_state)
            ys, states = rnn(xs_pack, hx=None if prev_state is None else prev_state[layer])
            elayer_states.append(states)
            # ys: utt list of frame x cdim x 2 (2: means bidirectional)
            ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
            sub = self.subsample[layer + 1]
            if sub > 1:
                ys_pad = ys_pad[:, ::sub]
                ilens = [int(i + 1) // sub for i in ilens]
            # (sum _utt frame_utt) x dim
            projected = getattr(self, 'bt' + str(layer)
                                )(ys_pad.contiguous().view(-1, ys_pad.size(2)))
            if layer == self.elayers - 1:
                xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
            else:
                xs_pad = torch.tanh(projected.view(ys_pad.size(0), ys_pad.size(1), -1))

        return xs_pad, ilens, elayer_states  # x: utt list of frame x dim


class RNN(torch.nn.Module):
    """RNN module

    :param int idim: dimension of inputs
    :param int elayers: number of encoder layers
    :param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
    :param int hdim: number of final projection units
    :param float dropout: dropout rate
    :param str typ: The RNN type
    """

    def __init__(self, idim, elayers, cdim, hdim, dropout, typ="blstm"):
        super(RNN, self).__init__()
        bidir = typ[0] == "b"
        self.nbrnn = torch.nn.LSTM(idim, cdim, elayers, batch_first=True,
                                   dropout=dropout, bidirectional=bidir) if "lstm" in typ \
            else torch.nn.GRU(idim, cdim, elayers, batch_first=True, dropout=dropout,
                              bidirectional=bidir)
        if bidir:
            self.l_last = torch.nn.Linear(cdim * 2, hdim)
        else:
            self.l_last = torch.nn.Linear(cdim, hdim)
        self.typ = typ

    def forward(self, xs_pad, ilens, prev_state=None):
        """RNN forward

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor prev_state: batch of previous RNN states
        :return: batch of hidden state sequences (B, Tmax, eprojs)
        :rtype: torch.Tensor
        """
        logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True)
        self.nbrnn.flatten_parameters()
        if prev_state is not None and self.nbrnn.bidirectional:
            # We assume that when previous state is passed, it means that we're streaming the input
            # and therefore cannot propagate backward BRNN state (otherwise it goes in the wrong direction)
            prev_state = reset_backward_rnn_state(prev_state)
        ys, states = self.nbrnn(xs_pack, hx=prev_state)
        # ys: utt list of frame x cdim x 2 (2: means bidirectional)
        ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
        # (sum _utt frame_utt) x dim
        projected = torch.tanh(self.l_last(
            ys_pad.contiguous().view(-1, ys_pad.size(2))))
        xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
        return xs_pad, ilens, states  # x: utt list of frame x dim


def reset_backward_rnn_state(states):
    """Sets backward BRNN states to zeroes - useful in processing of sliding windows over the inputs"""
    if isinstance(states, (list, tuple)):
        for state in states:
            state[1::2] = 0.
    else:
        states[1::2] = 0.
    return states


class VGG2L(torch.nn.Module):
    """VGG-like module

    :param int in_channel: number of input channels
    """

    def __init__(self, in_channel=1, downsample=True):
        super(VGG2L, self).__init__()
        # CNN layer (VGG motivated)
        self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1)
        self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1)
        self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1)
        self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1)

        self.in_channel = in_channel
        self.downsample = downsample
        if downsample:
            self.stride = 2
        else:
            self.stride = 1

    def forward(self, xs_pad, ilens, **kwargs):
        """VGG2L forward

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :return: batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4) if downsample
        :rtype: torch.Tensor
        """
        logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))

        # x: utt x frame x dim
        # xs_pad = F.pad_sequence(xs_pad)

        # x: utt x 1 (input channel num) x frame x dim
        xs_pad = xs_pad.view(xs_pad.size(0), xs_pad.size(1), self.in_channel,
                             xs_pad.size(2) // self.in_channel).transpose(1, 2)

        # NOTE: max_pool1d ?
        xs_pad = F.relu(self.conv1_1(xs_pad))
        xs_pad = F.relu(self.conv1_2(xs_pad))
        if self.downsample:
            xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)

        xs_pad = F.relu(self.conv2_1(xs_pad))
        xs_pad = F.relu(self.conv2_2(xs_pad))
        if self.downsample:
            xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)
        if torch.is_tensor(ilens):
            ilens = ilens.cpu().numpy()
        else:
            ilens = np.array(ilens, dtype=np.float32)
        if self.downsample:
            ilens = np.array(np.ceil(ilens / 2), dtype=np.int64)
            ilens = np.array(
                np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64).tolist()

        # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
        xs_pad = xs_pad.transpose(1, 2)
        xs_pad = xs_pad.contiguous().view(
            xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3))
        return xs_pad, ilens, None  # no state in this layer


class Encoder(torch.nn.Module):
    """Encoder module

    :param str etype: type of encoder network
    :param int idim: number of dimensions of encoder network
    :param int elayers: number of layers of encoder network
    :param int eunits: number of lstm units of encoder network
    :param int eprojs: number of projection units of encoder network
    :param np.ndarray subsample: list of subsampling numbers
    :param float dropout: dropout rate
    :param int in_channel: number of input channels
    """

    def __init__(self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1):
        super(Encoder, self).__init__()
        typ = etype.lstrip("vgg").rstrip("p")
        if typ not in ['lstm', 'gru', 'blstm', 'bgru']:
            logging.error("Error: need to specify an appropriate encoder architecture")

        if etype.startswith("vgg"):
            if etype[-1] == "p":
                self.enc = torch.nn.ModuleList([VGG2L(in_channel),
                                                RNNP(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
                                                     eprojs,
                                                     subsample, dropout, typ=typ)])
                logging.info('Use CNN-VGG + ' + typ.upper() + 'P for encoder')
            else:
                self.enc = torch.nn.ModuleList([VGG2L(in_channel),
                                                RNN(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
                                                    eprojs,
                                                    dropout, typ=typ)])
                logging.info('Use CNN-VGG + ' + typ.upper() + ' for encoder')
        else:
            if etype[-1] == "p":
                self.enc = torch.nn.ModuleList(
                    [RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)])
                logging.info(typ.upper() + ' with every-layer projection for encoder')
            else:
                self.enc = torch.nn.ModuleList([RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)])
                logging.info(typ.upper() + ' without projection for encoder')

    def forward(self, xs_pad, ilens, prev_states=None):
        """Encoder forward

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor prev_state: batch of previous encoder hidden states (?, ...)
        :return: batch of hidden state sequences (B, Tmax, eprojs)
        :rtype: torch.Tensor
        """
        if prev_states is None:
            prev_states = [None] * len(self.enc)
        assert len(prev_states) == len(self.enc)

        current_states = []
        for module, prev_state in zip(self.enc, prev_states):
            xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state)
            current_states.append(states)

        # make mask to remove bias value in padded part
        mask = to_device(self, make_pad_mask(ilens).unsqueeze(-1))

        return xs_pad.masked_fill(mask, 0.0), ilens, current_states


def encoder_for(args, idim, subsample):
    """Instantiates an encoder module given the program arguments

    :param Namespace args: The arguments
    :param int or List of integer idim: dimension of input, e.g. 83, or
                                        List of dimensions of inputs, e.g. [83,83]
    :param List or List of List subsample: subsample factors, e.g. [1,2,2,1,1], or
                                        List of subsample factors of each encoder. e.g. [[1,2,2,1,1], [1,2,2,1,1]]
    :rtype torch.nn.Module
    :return: The encoder module
    """
    num_encs = getattr(args, "num_encs", 1)  # use getattr to keep compatibility
    if num_encs == 1:
        # compatible with single encoder asr mode
        return Encoder(args.etype, idim, args.elayers, args.eunits, args.eprojs, subsample, args.dropout_rate)
    elif num_encs >= 1:
        enc_list = torch.nn.ModuleList()
        for idx in range(num_encs):
            enc = Encoder(args.etype[idx], idim[idx], args.elayers[idx], args.eunits[idx], args.eprojs, subsample[idx],
                          args.dropout_rate[idx])
            enc_list.append(enc)
        return enc_list
    else:
        raise ValueError("Number of encoders needs to be more than one. {}".format(num_encs))