Spaces:
Runtime error
Runtime error
File size: 13,237 Bytes
d59aeff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import logging
import six
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from .e2e_asr_common import get_vgg2l_odim
from .nets_utils import make_pad_mask, to_device
class RNNP(torch.nn.Module):
"""RNN with projection layer module
:param int idim: dimension of inputs
:param int elayers: number of encoder layers
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
:param int hdim: number of projection units
:param np.ndarray subsample: list of subsampling numbers
:param float dropout: dropout rate
:param str typ: The RNN type
"""
def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"):
super(RNNP, self).__init__()
bidir = typ[0] == "b"
for i in six.moves.range(elayers):
if i == 0:
inputdim = idim
else:
inputdim = hdim
rnn = torch.nn.LSTM(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir,
batch_first=True) if "lstm" in typ \
else torch.nn.GRU(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir, batch_first=True)
setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn)
# bottleneck layer to merge
if bidir:
setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim))
else:
setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim))
self.elayers = elayers
self.cdim = cdim
self.subsample = subsample
self.typ = typ
self.bidir = bidir
def forward(self, xs_pad, ilens, prev_state=None):
"""RNNP forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous RNN states
:return: batch of hidden state sequences (B, Tmax, hdim)
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
elayer_states = []
for layer in six.moves.range(self.elayers):
xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True, enforce_sorted=False)
rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer))
rnn.flatten_parameters()
if prev_state is not None and rnn.bidirectional:
prev_state = reset_backward_rnn_state(prev_state)
ys, states = rnn(xs_pack, hx=None if prev_state is None else prev_state[layer])
elayer_states.append(states)
# ys: utt list of frame x cdim x 2 (2: means bidirectional)
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
sub = self.subsample[layer + 1]
if sub > 1:
ys_pad = ys_pad[:, ::sub]
ilens = [int(i + 1) // sub for i in ilens]
# (sum _utt frame_utt) x dim
projected = getattr(self, 'bt' + str(layer)
)(ys_pad.contiguous().view(-1, ys_pad.size(2)))
if layer == self.elayers - 1:
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
else:
xs_pad = torch.tanh(projected.view(ys_pad.size(0), ys_pad.size(1), -1))
return xs_pad, ilens, elayer_states # x: utt list of frame x dim
class RNN(torch.nn.Module):
"""RNN module
:param int idim: dimension of inputs
:param int elayers: number of encoder layers
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
:param int hdim: number of final projection units
:param float dropout: dropout rate
:param str typ: The RNN type
"""
def __init__(self, idim, elayers, cdim, hdim, dropout, typ="blstm"):
super(RNN, self).__init__()
bidir = typ[0] == "b"
self.nbrnn = torch.nn.LSTM(idim, cdim, elayers, batch_first=True,
dropout=dropout, bidirectional=bidir) if "lstm" in typ \
else torch.nn.GRU(idim, cdim, elayers, batch_first=True, dropout=dropout,
bidirectional=bidir)
if bidir:
self.l_last = torch.nn.Linear(cdim * 2, hdim)
else:
self.l_last = torch.nn.Linear(cdim, hdim)
self.typ = typ
def forward(self, xs_pad, ilens, prev_state=None):
"""RNN forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous RNN states
:return: batch of hidden state sequences (B, Tmax, eprojs)
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True)
self.nbrnn.flatten_parameters()
if prev_state is not None and self.nbrnn.bidirectional:
# We assume that when previous state is passed, it means that we're streaming the input
# and therefore cannot propagate backward BRNN state (otherwise it goes in the wrong direction)
prev_state = reset_backward_rnn_state(prev_state)
ys, states = self.nbrnn(xs_pack, hx=prev_state)
# ys: utt list of frame x cdim x 2 (2: means bidirectional)
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
# (sum _utt frame_utt) x dim
projected = torch.tanh(self.l_last(
ys_pad.contiguous().view(-1, ys_pad.size(2))))
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
return xs_pad, ilens, states # x: utt list of frame x dim
def reset_backward_rnn_state(states):
"""Sets backward BRNN states to zeroes - useful in processing of sliding windows over the inputs"""
if isinstance(states, (list, tuple)):
for state in states:
state[1::2] = 0.
else:
states[1::2] = 0.
return states
class VGG2L(torch.nn.Module):
"""VGG-like module
:param int in_channel: number of input channels
"""
def __init__(self, in_channel=1, downsample=True):
super(VGG2L, self).__init__()
# CNN layer (VGG motivated)
self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1)
self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1)
self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1)
self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1)
self.in_channel = in_channel
self.downsample = downsample
if downsample:
self.stride = 2
else:
self.stride = 1
def forward(self, xs_pad, ilens, **kwargs):
"""VGG2L forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:return: batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4) if downsample
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
# x: utt x frame x dim
# xs_pad = F.pad_sequence(xs_pad)
# x: utt x 1 (input channel num) x frame x dim
xs_pad = xs_pad.view(xs_pad.size(0), xs_pad.size(1), self.in_channel,
xs_pad.size(2) // self.in_channel).transpose(1, 2)
# NOTE: max_pool1d ?
xs_pad = F.relu(self.conv1_1(xs_pad))
xs_pad = F.relu(self.conv1_2(xs_pad))
if self.downsample:
xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)
xs_pad = F.relu(self.conv2_1(xs_pad))
xs_pad = F.relu(self.conv2_2(xs_pad))
if self.downsample:
xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)
if torch.is_tensor(ilens):
ilens = ilens.cpu().numpy()
else:
ilens = np.array(ilens, dtype=np.float32)
if self.downsample:
ilens = np.array(np.ceil(ilens / 2), dtype=np.int64)
ilens = np.array(
np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64).tolist()
# x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
xs_pad = xs_pad.transpose(1, 2)
xs_pad = xs_pad.contiguous().view(
xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3))
return xs_pad, ilens, None # no state in this layer
class Encoder(torch.nn.Module):
"""Encoder module
:param str etype: type of encoder network
:param int idim: number of dimensions of encoder network
:param int elayers: number of layers of encoder network
:param int eunits: number of lstm units of encoder network
:param int eprojs: number of projection units of encoder network
:param np.ndarray subsample: list of subsampling numbers
:param float dropout: dropout rate
:param int in_channel: number of input channels
"""
def __init__(self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1):
super(Encoder, self).__init__()
typ = etype.lstrip("vgg").rstrip("p")
if typ not in ['lstm', 'gru', 'blstm', 'bgru']:
logging.error("Error: need to specify an appropriate encoder architecture")
if etype.startswith("vgg"):
if etype[-1] == "p":
self.enc = torch.nn.ModuleList([VGG2L(in_channel),
RNNP(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
eprojs,
subsample, dropout, typ=typ)])
logging.info('Use CNN-VGG + ' + typ.upper() + 'P for encoder')
else:
self.enc = torch.nn.ModuleList([VGG2L(in_channel),
RNN(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
eprojs,
dropout, typ=typ)])
logging.info('Use CNN-VGG + ' + typ.upper() + ' for encoder')
else:
if etype[-1] == "p":
self.enc = torch.nn.ModuleList(
[RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)])
logging.info(typ.upper() + ' with every-layer projection for encoder')
else:
self.enc = torch.nn.ModuleList([RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)])
logging.info(typ.upper() + ' without projection for encoder')
def forward(self, xs_pad, ilens, prev_states=None):
"""Encoder forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous encoder hidden states (?, ...)
:return: batch of hidden state sequences (B, Tmax, eprojs)
:rtype: torch.Tensor
"""
if prev_states is None:
prev_states = [None] * len(self.enc)
assert len(prev_states) == len(self.enc)
current_states = []
for module, prev_state in zip(self.enc, prev_states):
xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state)
current_states.append(states)
# make mask to remove bias value in padded part
mask = to_device(self, make_pad_mask(ilens).unsqueeze(-1))
return xs_pad.masked_fill(mask, 0.0), ilens, current_states
def encoder_for(args, idim, subsample):
"""Instantiates an encoder module given the program arguments
:param Namespace args: The arguments
:param int or List of integer idim: dimension of input, e.g. 83, or
List of dimensions of inputs, e.g. [83,83]
:param List or List of List subsample: subsample factors, e.g. [1,2,2,1,1], or
List of subsample factors of each encoder. e.g. [[1,2,2,1,1], [1,2,2,1,1]]
:rtype torch.nn.Module
:return: The encoder module
"""
num_encs = getattr(args, "num_encs", 1) # use getattr to keep compatibility
if num_encs == 1:
# compatible with single encoder asr mode
return Encoder(args.etype, idim, args.elayers, args.eunits, args.eprojs, subsample, args.dropout_rate)
elif num_encs >= 1:
enc_list = torch.nn.ModuleList()
for idx in range(num_encs):
enc = Encoder(args.etype[idx], idim[idx], args.elayers[idx], args.eunits[idx], args.eprojs, subsample[idx],
args.dropout_rate[idx])
enc_list.append(enc)
return enc_list
else:
raise ValueError("Number of encoders needs to be more than one. {}".format(num_encs))
|