File size: 16,836 Bytes
fe0ca90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""
taken from: https://github.com/karpathy/minGPT/
GPT model:
- the initial stem consists of a combination of token encoding and a positional encoding
- the meat of it is a uniform sequence of Transformer blocks
    - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
    - all blocks feed into a central residual pathway similar to resnets
- the final decoder is a linear projection into a vanilla Softmax classifier
"""

import math
import logging

import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import top_k_top_p_filtering

logger = logging.getLogger(__name__)


class GPTConfig:
    """ base GPT config, params common to all GPT versions """
    embd_pdrop = 0.1
    resid_pdrop = 0.1
    attn_pdrop = 0.1

    def __init__(self, vocab_size, block_size, **kwargs):
        self.vocab_size = vocab_size
        self.block_size = block_size
        for k,v in kwargs.items():
            setattr(self, k, v)


class GPT1Config(GPTConfig):
    """ GPT-1 like network roughly 125M params """
    n_layer = 12
    n_head = 12
    n_embd = 768


class CausalSelfAttention(nn.Module):
    """
    A vanilla multi-head masked self-attention layer with a projection at the end.
    It is possible to use torch.nn.MultiheadAttention here but I am including an
    explicit implementation here to show that there is nothing too scary here.
    """

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads
        self.key = nn.Linear(config.n_embd, config.n_embd)
        self.query = nn.Linear(config.n_embd, config.n_embd)
        self.value = nn.Linear(config.n_embd, config.n_embd)
        # regularization
        self.attn_drop = nn.Dropout(config.attn_pdrop)
        self.resid_drop = nn.Dropout(config.resid_pdrop)
        # output projection
        self.proj = nn.Linear(config.n_embd, config.n_embd)
        # causal mask to ensure that attention is only applied to the left in the input sequence
        mask = torch.tril(torch.ones(config.block_size,
                                     config.block_size))
        if hasattr(config, "n_unmasked"):
            mask[:config.n_unmasked, :config.n_unmasked] = 1
        self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size))
        self.n_head = config.n_head

    def forward(self, x, layer_past=None):
        B, T, C = x.size()

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        present = torch.stack((k, v))
        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        if layer_past is None:
            att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))

        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        return y, present   # TODO: check that this does not break anything


class Block(nn.Module):
    """ an unassuming Transformer block """
    def __init__(self, config):
        super().__init__()
        self.ln1 = nn.LayerNorm(config.n_embd)
        self.ln2 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.mlp = nn.Sequential(
            nn.Linear(config.n_embd, 4 * config.n_embd),
            nn.GELU(),  # nice
            nn.Linear(4 * config.n_embd, config.n_embd),
            nn.Dropout(config.resid_pdrop),
        )

    def forward(self, x, layer_past=None, return_present=False):
        # TODO: check that training still works
        if return_present: assert not self.training
        # layer past: tuple of length two with B, nh, T, hs
        attn, present = self.attn(self.ln1(x), layer_past=layer_past)

        x = x + attn
        x = x + self.mlp(self.ln2(x))
        if layer_past is not None or return_present:
            return x, present
        return x


class GPT(nn.Module):
    """  the full GPT language model, with a context size of block_size """
    def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256,
                 embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0):
        super().__init__()
        config = GPTConfig(vocab_size=vocab_size, block_size=block_size,
                           embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop,
                           n_layer=n_layer, n_head=n_head, n_embd=n_embd,
                           n_unmasked=n_unmasked)
        # input embedding stem
        self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
        self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
        self.drop = nn.Dropout(config.embd_pdrop)
        # transformer
        self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
        # decoder head
        self.ln_f = nn.LayerNorm(config.n_embd)
        self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.block_size = config.block_size
        self.apply(self._init_weights)
        self.config = config
        logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))

    def get_block_size(self):
        return self.block_size

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self, idx, embeddings=None, targets=None):
        # forward the GPT model
        token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector

        if embeddings is not None: # prepend explicit embeddings
            token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)

        t = token_embeddings.shape[1]
        assert t <= self.block_size, "Cannot forward, model block size is exhausted."
        position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
        x = self.drop(token_embeddings + position_embeddings)
        x = self.blocks(x)
        x = self.ln_f(x)
        logits = self.head(x)

        # if we are given some desired targets also calculate the loss
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

        return logits, loss

    def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None):
        # inference only
        assert not self.training
        token_embeddings = self.tok_emb(idx)    # each index maps to a (learnable) vector
        if embeddings is not None:              # prepend explicit embeddings
            token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)

        if past is not None:
            assert past_length is not None
            past = torch.cat(past, dim=-2)   # n_layer, 2, b, nh, len_past, dim_head
            past_shape = list(past.shape)
            expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head]
            assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}"
            position_embeddings = self.pos_emb[:, past_length, :]  # each position maps to a (learnable) vector
        else:
            position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :]

        x = self.drop(token_embeddings + position_embeddings)
        presents = []  # accumulate over layers
        for i, block in enumerate(self.blocks):
            x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True)
            presents.append(present)

        x = self.ln_f(x)
        logits = self.head(x)
        # if we are given some desired targets also calculate the loss
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

        return logits, loss, torch.stack(presents)  # _, _, n_layer, 2, b, nh, 1, dim_head


class DummyGPT(nn.Module):
    # for debugging
    def __init__(self, add_value=1):
        super().__init__()
        self.add_value = add_value

    def forward(self, idx):
        return idx + self.add_value, None


class CodeGPT(nn.Module):
    """Takes in semi-embeddings"""
    def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256,
                 embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0):
        super().__init__()
        config = GPTConfig(vocab_size=vocab_size, block_size=block_size,
                           embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop,
                           n_layer=n_layer, n_head=n_head, n_embd=n_embd,
                           n_unmasked=n_unmasked)
        # input embedding stem
        self.tok_emb = nn.Linear(in_channels, config.n_embd)
        self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
        self.drop = nn.Dropout(config.embd_pdrop)
        # transformer
        self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
        # decoder head
        self.ln_f = nn.LayerNorm(config.n_embd)
        self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.block_size = config.block_size
        self.apply(self._init_weights)
        self.config = config
        logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))

    def get_block_size(self):
        return self.block_size

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self, idx, embeddings=None, targets=None):
        # forward the GPT model
        token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector

        if embeddings is not None: # prepend explicit embeddings
            token_embeddings = torch.cat((embeddings, token_embeddings), dim=1)

        t = token_embeddings.shape[1]
        assert t <= self.block_size, "Cannot forward, model block size is exhausted."
        position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
        x = self.drop(token_embeddings + position_embeddings)
        x = self.blocks(x)
        x = self.taming_cinln_f(x)
        logits = self.head(x)

        # if we are given some desired targets also calculate the loss
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

        return logits, loss



#### sampling utils

def top_k_logits(logits, k):
    v, ix = torch.topk(logits, k)
    out = logits.clone()
    out[out < v[:, [-1]]] = -float('Inf')
    return out

@torch.no_grad()
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None):
    """
    take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in
    the sequence, feeding the predictions back into the model each time. Clearly the sampling
    has quadratic complexity unlike an RNN that is only linear, and has a finite context window
    of block_size, unlike an RNN that has an infinite context window.
    """
    block_size = model.get_block_size()
    model.eval()
    for k in range(steps):
        x_cond = x if x.size(1) <= block_size else x[:, -block_size:]  # crop context if needed
        logits, _ = model(x_cond)
        # pluck the logits at the final step and scale by temperature
        logits = logits[:, -1, :] / temperature
        # optionally crop probabilities to only the top k options
        if top_k is not None:
            logits = top_k_logits(logits, top_k)
        # apply softmax to convert to probabilities
        probs = F.softmax(logits, dim=-1)
        # sample from the distribution or take the most likely
        if sample:
            ix = torch.multinomial(probs, num_samples=1)
        else:
            _, ix = torch.topk(probs, k=1, dim=-1)
        # append to the sequence and continue
        x = torch.cat((x, ix), dim=1)

    return x


@torch.no_grad()
def sample_with_past(x, model, steps, temperature=1., sample_logits=True,
                     top_k=None, top_p=None, callback=None):
    # x is conditioning
    sample = x
    cond_len = x.shape[1]
    past = None
    for n in range(steps):
        if callback is not None:
            callback(n)
        logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1))
        if past is None:
            past = [present]
        else:
            past.append(present)
        logits = logits[:, -1, :] / temperature
        if top_k is not None:
            logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)

        probs = F.softmax(logits, dim=-1)
        if not sample_logits:
            _, x = torch.topk(probs, k=1, dim=-1)
        else:
            x = torch.multinomial(probs, num_samples=1)
        # append to the sequence and continue
        sample = torch.cat((sample, x), dim=1)
    del past
    sample = sample[:, cond_len:]  # cut conditioning off
    return sample


#### clustering utils

class KMeans(nn.Module):
    def __init__(self, ncluster=512, nc=3, niter=10):
        super().__init__()
        self.ncluster = ncluster
        self.nc = nc
        self.niter = niter
        self.shape = (3,32,32)
        self.register_buffer("C", torch.zeros(self.ncluster,nc))
        self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))

    def is_initialized(self):
        return self.initialized.item() == 1

    @torch.no_grad()
    def initialize(self, x):
        N, D = x.shape
        assert D == self.nc, D
        c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random
        for i in range(self.niter):
            # assign all pixels to the closest codebook element
            a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1)
            # move each codebook element to be the mean of the pixels that assigned to it
            c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)])
            # re-assign any poorly positioned codebook elements
            nanix = torch.any(torch.isnan(c), dim=1)
            ndead = nanix.sum().item()
            print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead))
            c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters

        self.C.copy_(c)
        self.initialized.fill_(1)


    def forward(self, x, reverse=False, shape=None):
        if not reverse:
            # flatten
            bs,c,h,w = x.shape
            assert c == self.nc
            x = x.reshape(bs,c,h*w,1)
            C = self.C.permute(1,0)
            C = C.reshape(1,c,1,self.ncluster)
            a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices
            return a
        else:
            # flatten
            bs, HW = x.shape
            """
            c = self.C.reshape( 1, self.nc,  1, self.ncluster)
            c = c[bs*[0],:,:,:]
            c = c[:,:,HW*[0],:]
            x =      x.reshape(bs,       1, HW,             1)
            x = x[:,3*[0],:,:]
            x = torch.gather(c, dim=3, index=x)
            """
            x = self.C[x]
            x = x.permute(0,2,1)
            shape = shape if shape is not None else self.shape
            x = x.reshape(bs, *shape)

            return x