Spaces:
Build error
Build error
File size: 7,891 Bytes
ef01fd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import time
import numpy as np
from PIL import Image
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.utils as utils
import torch.nn as nn
import torch
class ReMapping:
def __init__(self):
self.remapping = []
def process(self, seg):
new_seg = seg.copy()
for k, v in self.remapping.items():
new_seg[seg == k] = v
return new_seg
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))
def memory_limit_image_resize(cont_img):
# prevent too small or too big images
MINSIZE=256
MAXSIZE=960
orig_width = cont_img.width
orig_height = cont_img.height
if max(cont_img.width,cont_img.height) < MINSIZE:
if cont_img.width > cont_img.height:
cont_img.thumbnail((int(cont_img.width*1.0/cont_img.height*MINSIZE), MINSIZE), Image.BICUBIC)
else:
cont_img.thumbnail((MINSIZE, int(cont_img.height*1.0/cont_img.width*MINSIZE)), Image.BICUBIC)
if min(cont_img.width,cont_img.height) > MAXSIZE:
if cont_img.width > cont_img.height:
cont_img.thumbnail((MAXSIZE, int(cont_img.height*1.0/cont_img.width*MAXSIZE)), Image.BICUBIC)
else:
cont_img.thumbnail(((int(cont_img.width*1.0/cont_img.height*MAXSIZE), MAXSIZE)), Image.BICUBIC)
print("Resize image: (%d,%d)->(%d,%d)" % (orig_width, orig_height, cont_img.width, cont_img.height))
return cont_img.width, cont_img.height
def stylization(stylization_module, smoothing_module, content_image_path, style_image_path, content_seg_path, style_seg_path, output_image_path,
cuda, save_intermediate, no_post, cont_seg_remapping=None, styl_seg_remapping=None):
# Load image
with torch.no_grad():
cont_img = Image.open(content_image_path).convert('RGB')
styl_img = Image.open(style_image_path).convert('RGB')
new_cw, new_ch = memory_limit_image_resize(cont_img)
new_sw, new_sh = memory_limit_image_resize(styl_img)
cont_pilimg = cont_img.copy()
cw = cont_pilimg.width
ch = cont_pilimg.height
try:
cont_seg = Image.open(content_seg_path)
styl_seg = Image.open(style_seg_path)
cont_seg.resize((new_cw,new_ch),Image.NEAREST)
styl_seg.resize((new_sw,new_sh),Image.NEAREST)
except:
cont_seg = []
styl_seg = []
cont_img = transforms.ToTensor()(cont_img).unsqueeze(0)
styl_img = transforms.ToTensor()(styl_img).unsqueeze(0)
if cuda:
cont_img = cont_img.cuda(0)
styl_img = styl_img.cuda(0)
stylization_module.cuda(0)
# cont_img = Variable(cont_img, volatile=True)
# styl_img = Variable(styl_img, volatile=True)
cont_seg = np.asarray(cont_seg)
styl_seg = np.asarray(styl_seg)
if cont_seg_remapping is not None:
cont_seg = cont_seg_remapping.process(cont_seg)
if styl_seg_remapping is not None:
styl_seg = styl_seg_remapping.process(styl_seg)
if save_intermediate:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" %(new_cw,new_ch,cw,ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch,cw), mode='bilinear')
utils.save_image(stylized_img.data.cpu().float(), output_image_path, nrow=1, padding=0)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(output_image_path, content_image_path)
out_img.save(output_image_path)
if not cuda:
print("NotImplemented: The CPU version of smooth filter has not been implemented currently.")
return
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
from smooth_filter import smooth_filter
out_img = smooth_filter(output_image_path, content_image_path, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)
else:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" %(new_cw,new_ch,cw,ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch,cw), mode='bilinear')
grid = utils.make_grid(stylized_img.data, nrow=1, padding=0)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
out_img = Image.fromarray(ndarr)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(out_img, cont_pilimg)
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
from smooth_filter import smooth_filter
out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)
def stylization_gradio(
stylization_module,
smoothing_module,
content_image,
style_image,
cuda,
post_processing,
cont_seg_remapping=None,
styl_seg_remapping=None):
# Load image
with torch.no_grad():
cont_img = Image.fromarray(content_image).convert('RGB')
styl_img = Image.fromarray(style_image).convert('RGB')
new_cw, new_ch = memory_limit_image_resize(cont_img)
new_sw, new_sh = memory_limit_image_resize(styl_img)
cont_pilimg = cont_img.copy()
cw = cont_pilimg.width
ch = cont_pilimg.height
cont_seg = []
styl_seg = []
cont_img = transforms.ToTensor()(cont_img).unsqueeze(0)
styl_img = transforms.ToTensor()(styl_img).unsqueeze(0)
if cuda:
cont_img = cont_img.cuda(0)
styl_img = styl_img.cuda(0)
stylization_module.cuda(0)
cont_seg = np.asarray(cont_seg)
styl_seg = np.asarray(styl_seg)
if cont_seg_remapping is not None:
cont_seg = cont_seg_remapping.process(cont_seg)
if styl_seg_remapping is not None:
styl_seg = styl_seg_remapping.process(styl_seg)
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" %(new_cw,new_ch,cw,ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch,cw), mode='bilinear')
grid = utils.make_grid(stylized_img.data, nrow=1, padding=0)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
out_img = Image.fromarray(ndarr)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(out_img, cont_pilimg)
if post_processing:
with Timer("Elapsed time in post processing: %f"):
from smooth_filter import smooth_filter
out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1)
return out_img
|