File size: 1,743 Bytes
ea55fae
3cac10f
ea55fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f76e9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4889a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import os


HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")

title = "Have Fun With RickBot"
description = """
<p>
<center>
The bot is trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
<img src="https://gradio.app/assets/img/rick.gif">
</center>
</p>
"""
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center></p>"

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

def predict(input, history=[]):
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
    
    return response, history

gr.Interface(predict,"textbox","chatbot",theme ="grass", title = title, flagging_callback=hf_writer,description = description, article = article).launch(enable_queue=True)  # customizes the input component