File size: 1,006 Bytes
70e062f 8e201b2 70e062f 8e201b2 70e062f 8e201b2 70e062f 8e201b2 95dc8c0 8e201b2 95dc8c0 8e201b2 95dc8c0 8e201b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import skops.io as sio
pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)
def classifier(Age, Sex, BP, Cholesterol, Na_to_K):
pred_glass = pipe.predict([[Age, Sex, BP, Cholesterol, Na_to_K]])[0]
label = f"Predicted Glass label: **{pred_glass}**"
return label
inputs = [
gr.Slider(15, 74, step=1, label="Age"),
gr.Radio(["M", "F"], label="Sex"),
gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
]
outputs = [gr.Label(num_top_classes=5)]
examples=[
[30, "M", "HIGH", "NORMAL", 15.4],
[35, "F", "LOW", "NORMAL", 8],
[50, "M", "HIGH", "HIGH", 34],
]
title = "Drug Classification"
description = "Enter the details to correctly identify Drug type?"
gr.Interface(
fn=classifier,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description,
).launch()
|