File size: 1,006 Bytes
70e062f
8e201b2
70e062f
8e201b2
70e062f
 
8e201b2
 
 
 
70e062f
 
8e201b2
95dc8c0
 
 
 
 
8e201b2
 
 
95dc8c0
 
 
 
 
 
8e201b2
 
 
 
 
 
 
95dc8c0
8e201b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
import skops.io as sio

pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)


def classifier(Age, Sex, BP, Cholesterol, Na_to_K):
    pred_glass = pipe.predict([[Age, Sex, BP, Cholesterol, Na_to_K]])[0]
    label = f"Predicted Glass label: **{pred_glass}**"
    return label


inputs = [
    gr.Slider(15, 74, step=1, label="Age"),
    gr.Radio(["M", "F"], label="Sex"),
    gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
    gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
    gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
]
outputs = [gr.Label(num_top_classes=5)]

examples=[
        [30, "M", "HIGH", "NORMAL", 15.4],
        [35, "F", "LOW", "NORMAL", 8],
        [50, "M", "HIGH", "HIGH", 34],
    ]

title = "Drug Classification"
description = "Enter the details to correctly identify Drug type?"

gr.Interface(
    fn=classifier,
    inputs=inputs,
    outputs=outputs,
    examples=examples,
    title=title,
    description=description,
).launch()