Spaces:
Running
Running
File size: 13,166 Bytes
0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 7822118 0b67cea 68173e6 0b67cea 68173e6 0b67cea 68173e6 0b67cea 7822118 0b67cea 68173e6 0b67cea 7822118 0b67cea 7822118 0b67cea 7822118 0b67cea 7822118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import gradio as gr
import requests
import random
import os
import zipfile
import librosa
import time
from infer_rvc_python import BaseLoader
from pydub import AudioSegment
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
import asyncio
from audio_separator.separator import Separator
language_dict = tts_order_voice
async def text_to_speech_edge(text, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# fucking dogshit toggle
try:
import spaces
spaces_status = True
except ImportError:
spaces_status = False
separator = Separator()
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
global pth_file
global index_file
pth_file = "model.pth"
index_file = "model.index"
#CONFIGS
TEMP_DIR = "temp"
MODEL_PREFIX = "model"
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+",
]
os.makedirs(TEMP_DIR, exist_ok=True)
def unzip_file(file):
filename = os.path.basename(file).split(".")[0]
with zipfile.ZipFile(file, 'r') as zip_ref:
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
return True
def get_training_info(audio_file):
if audio_file is None:
return 'Please provide an audio file!'
duration = get_audio_duration(audio_file)
sample_rate = wave.open(audio_file, 'rb').getframerate()
training_info = {
(0, 2): (150, 'OV2'),
(2, 3): (200, 'OV2'),
(3, 5): (250, 'OV2'),
(5, 10): (300, 'Normal'),
(10, 25): (500, 'Normal'),
(25, 45): (700, 'Normal'),
(45, 60): (1000, 'Normal')
}
for (min_duration, max_duration), (epochs, pretrain) in training_info.items():
if min_duration <= duration < max_duration:
break
else:
return 'Duration is not within the specified range!'
return f'You should use the **{pretrain}** pretrain with **{epochs}** epochs at **{sample_rate/1000}khz** sample rate.'
def on_button_click(audio_file_path):
return get_training_info(audio_file_path)
def get_audio_duration(audio_file_path):
audio_info = sf.info(audio_file_path)
duration_minutes = audio_info.duration / 60
return duration_minutes
def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji π
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
def download_from_url(url, filename=None):
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/") # made it delik proof π
if "huggingface" not in url:
return ["The URL must be from huggingface", "Failed", "Failed"]
if filename is None:
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
response = requests.get(url)
total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file)
if total > 500000000:
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
current = 0
with open(filename, "wb") as f:
for data in response.iter_content(chunk_size=4096):
f.write(data)
current += len(data)
print(progress_bar(total, current), end="\r")
try:
unzip_file(filename)
except Exception as e:
return ["Failed to unzip the file", "Failed", "Failed"]
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
pth_files = []
index_files = []
for root, dirs, files in os.walk(unzipped_dir):
for file in files:
if file.endswith(".pth"):
pth_files.append(os.path.join(root, file))
elif file.endswith(".index"):
index_files.append(os.path.join(root, file))
print(pth_files, index_files)
global pth_file
global index_file
pth_file = pth_files[0]
index_file = index_files[0]
pth_file_ui.value = pth_file
index_file_ui.value = index_file
print(pth_file_ui.value)
print(index_file_ui.value)
return ["Downloaded as " + filename, pth_files[0], index_files[0]]
def inference(audio, model_name):
output_data = inf_handler(audio, model_name)
vocals = output_data[0]
inst = output_data[1]
return vocals, inst
if spaces_status:
@spaces.GPU()
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
else:
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
def calculate_remaining_time(epochs, seconds_per_epoch):
total_seconds = epochs * seconds_per_epoch
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
seconds = total_seconds % 60
if hours == 0:
return f"{int(minutes)} minutes"
elif hours == 1:
return f"{int(hours)} hour and {int(minutes)} minutes"
else:
return f"{int(hours)} hours and {int(minutes)} minutes"
def inf_handler(audio, model_name):
model_found = False
for model_info in UVR_5_MODELS:
if model_info["model_name"] == model_name:
separator.load_model(model_info["checkpoint"])
model_found = True
break
if not model_found:
separator.load_model()
output_files = separator.separate(audio)
vocals = output_files[0]
inst = output_files[1]
return vocals, inst
def run(
audio_files,
pitch_alg,
pitch_lvl,
index_inf,
r_m_f,
e_r,
c_b_p,
):
if not audio_files:
raise ValueError("The audio pls")
if isinstance(audio_files, str):
audio_files = [audio_files]
try:
duration_base = librosa.get_duration(filename=audio_files[0])
print("Duration:", duration_base)
except Exception as e:
print(e)
random_tag = "USER_"+str(random.randint(10000000, 99999999))
file_m = pth_file_ui.value
file_index = index_file_ui.value
print("Random tag:", random_tag)
print("File model:", file_m)
print("Pitch algorithm:", pitch_alg)
print("Pitch level:", pitch_lvl)
print("File index:", file_index)
print("Index influence:", index_inf)
print("Respiration median filtering:", r_m_f)
print("Envelope ratio:", e_r)
converter.apply_conf(
tag=random_tag,
file_model=file_m,
pitch_algo=pitch_alg,
pitch_lvl=pitch_lvl,
file_index=file_index,
index_influence=index_inf,
respiration_median_filtering=r_m_f,
envelope_ratio=e_r,
consonant_breath_protection=c_b_p,
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
)
time.sleep(0.1)
result = convert_now(audio_files, random_tag, converter)
print("Result:", result)
return result[0]
def upload_model(index_file, pth_file):
pth_file = pth_file.name
index_file = index_file.name
pth_file_ui.value = pth_file
index_file_ui.value = index_file
return "Uploaded!"
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC π") as demo:
gr.Markdown("## Ilaria RVC π")
with gr.Tab("Inference"):
sound_gui = gr.Audio(value=None, type="filepath", autoplay=False, visible=True)
pth_file_ui = gr.Textbox(label="Model pth file", value=pth_file, visible=False, interactive=False)
index_file_ui = gr.Textbox(label="Index pth file", value=index_file, visible=False, interactive=False)
with gr.Accordion("Ilaria TTS", open=False):
text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True)
dropdown_tts = gr.Dropdown(label="Language and Model", choices=list(language_dict.keys()), interactive=True, value=list(language_dict.keys())[0])
button_tts = gr.Button("Speak", variant="primary")
# Rimuovi l'output_tts e usa solo sound_gui come output
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=sound_gui)
with gr.Accordion("Settings", open=False):
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch algorithm", visible=True, interactive=True)
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True)
index_inf_conf = gr.Slider(minimum=0, maximum=1, label="Index influence -> How much accent is applied", value=0.75)
respiration_filter_conf = gr.Slider(minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True)
envelope_ratio_conf = gr.Slider(minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True)
consonant_protec_conf = gr.Slider(minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True)
button_conf = gr.Button("Convert", variant="primary")
output_conf = gr.Audio(type="filepath", label="Output")
button_conf.click(lambda: None, None, output_conf)
button_conf.click(
run,
inputs=[
sound_gui,
pitch_algo_conf,
pitch_lvl_conf,
index_inf_conf,
respiration_filter_conf,
envelope_ratio_conf,
consonant_protec_conf,
],
outputs=[output_conf],
)
with gr.Tab("Model Loader (Download and Upload)"):
with gr.Accordion("Model Downloader", open=False):
gr.Markdown(
"Download the model from the following URL and upload it here. (Hugginface RVC model)"
)
model = gr.Textbox(lines=1, label="Model URL")
download_button = gr.Button("Download Model")
status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False)
index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False)
download_button.click(download_from_url, model, outputs=[status, model_pth, index_pth])
with gr.Accordion("Upload A Model", open=False):
index_file_upload = gr.File(label="Index File (.index)")
pth_file_upload = gr.File(label="Model File (.pth)")
upload_button = gr.Button("Upload Model")
upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
upload_button.click(upload_model, [index_file_upload, pth_file_upload], upload_status)
with gr.Tab("Extra"):
with gr.Accordion("Training Time Calculator", open=False):
with gr.Column():
epochs_input = gr.Number(label="Number of Epochs")
seconds_input = gr.Number(label="Seconds per Epoch")
calculate_button = gr.Button("Calculate Time Remaining")
remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False)
calculate_button.click(
fn=calculate_remaining_time,
inputs=[epochs_input, seconds_input],
outputs=[remaining_time_output]
)
with gr.Accordion('Training Helper', open=False):
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload your audio file")
gr.Text("Please note that these results are approximate and intended to provide a general idea for beginners.", label='Notice:')
training_info_output = gr.Markdown(label="Training Information:")
get_info_button = gr.Button("Get Training Info")
get_info_button.click(
fn=on_button_click,
inputs=[audio_input],
outputs=[training_info_output]
)
with gr.Tab("Credits"):
gr.Markdown(
"""
Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo)
The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space π)
made with β€οΈ by [mikus](https://github.com/cappuch) - i make this ui........
## In loving memory of JLabDX ποΈ
"""
)
demo.queue(api_open=False).launch(show_api=False)
|