Spaces:
Runtime error
Runtime error
File size: 14,094 Bytes
0c7479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import requests
from io import BytesIO
from annotator.util import resize_image, HWC3
device = "cuda" if torch.cuda.is_available() else "cpu"
use_blip = False
use_gradio = False
# Diffusion init using diffusers.
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.inference import annotate, load_image, predict
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
# diffusers==0.14.0 required.
from diffusers import ControlNetModel, UniPCMultistepScheduler
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
import torch
base_model_path = "stabilityai/stable-diffusion-2-inpainting"
controlnet_path = "shgao/edit-anything-v0-1-1"
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
pipe.to(device)
# Segment-Anything init.
# pip install git+https://github.com/facebookresearch/segment-anything.git
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
sam_checkpoint = "./models/sam_vit_h_4b8939.pth"
groundingdino_checkpoint = "./models/groundingdino_swint_ogc.pth"
groundingdino_config_file = "./GroundingDINO_SwinT_OGC.py"
model_type = "default"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
def load_groundingdino_model(model_config_path, model_checkpoint_path):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
grounding_model = load_groundingdino_model(groundingdino_config_file, groundingdino_checkpoint).to(device)
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device=device))
# BLIP2 init.
if use_blip:
# need the latest transformers
# pip install git+https://github.com/huggingface/transformers.git
from transformers import AutoProcessor, Blip2ForConditionalGeneration
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
blip_model.to(device)
blip_model.to(device)
def get_blip2_text(image):
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
generated_ids = blip_model.generate(**inputs, max_new_tokens=50)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
return full_img, res
def get_sam_control(image):
masks = mask_generator.generate(image)
full_img, res = show_anns(masks)
return full_img, res
def prompt2mask(original_image, caption, box_threshold=0.25, text_threshold=0.25, num_boxes=2):
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
image_np = np.array(original_image, dtype=np.uint8)
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
_, image_tensor = image_transform_grounding(original_image)
boxes, logits, phrases = predict(grounding_model,
image_tensor, caption, box_threshold, text_threshold, device='cpu')
print(logits)
print('number of boxes: ', boxes.size(0))
# exit(0)
# from PIL import Image, ImageDraw, ImageFont
H, W = original_image.size[1], original_image.size[0]
boxes = boxes * torch.Tensor([W, H, W, H])
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
# draw = ImageDraw.Draw(original_image)
# for box in boxes:
# # from 0..1 to 0..W, 0..H
# # box = box * torch.Tensor([W, H, W, H])
# # # from xywh to xyxy
# # box[:2] -= box[2:] / 2
# # box[2:] += box[:2]
# # random color
# color = tuple(np.random.randint(0, 255, size=3).tolist())
# # draw
# x0, y0, x1, y1 = box
# x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
#
# draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# original_image.save('debug.jpg')
# exit(0)
final_m = torch.zeros((image_np.shape[0], image_np.shape[1]))
if boxes.size(0) > 0:
sam_predictor.set_image(image_np)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2])
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
num_obj = min(len(logits), num_boxes)
for obj_ind in range(num_obj):
# box = boxes[obj_ind]
m = masks[obj_ind][0]
final_m += m
final_m = (final_m > 0).to('cpu').numpy()
# print(final_m.max(), final_m.min())
return np.dstack((final_m, final_m, final_m)) * 255
def process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta):
with torch.no_grad():
mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8)
input_image = np.array(input_image, dtype=np.uint8)[:, :, :3]
if use_blip:
print("Generating text:")
blip2_prompt = get_blip2_text(input_image)
print("Generated text:", blip2_prompt)
if len(prompt) > 0:
prompt = blip2_prompt + ',' + prompt
else:
prompt = blip2_prompt
print("All text:", prompt)
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("Generating SAM seg:")
# the default SAM model is trained with 1024 size.
full_segmask, detected_map = get_sam_control(
resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
mask_image = HWC3(mask_image.astype(np.uint8))
mask_image = cv2.resize(
mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
mask_image = Image.fromarray(mask_image)
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
generator = torch.manual_seed(seed)
x_samples = pipe(
image=img,
mask_image=mask_image,
prompt=[prompt + ', ' + a_prompt] * num_samples,
negative_prompt=[n_prompt] * num_samples,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=control.type(torch.float16),
height=H,
width=W,
).images
results = [x_samples[i] for i in range(num_samples)]
return [full_segmask, mask_image] + results
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
# disable gradio when not using GUI.
if not use_gradio:
image_path = "assets/dog.png"
input_image_pil = Image.open(image_path).convert('RGB')
input_image = np.array(input_image_pil, dtype=np.uint8)[:, :, :3]
mask_prompt = 'bench.'
# mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8)
prompt = "cat"
a_prompt = 'best quality, extremely detailed'
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
num_samples = 3
image_resolution = 512
detect_resolution = 512
ddim_steps = 30
guess_mode = False
strength = 1.0
scale = 9.0
seed = -1
eta = 0.0
outputs = process(input_image_pil, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution,
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
image_list = []
input_image = resize_image(input_image, 512)
image_list.append(torch.tensor(input_image))
for i in range(len(outputs)):
each = outputs[i]
if type(each) is not np.ndarray:
each = np.array(each, dtype=np.uint8)
each = resize_image(each, 512)
print(i, each.shape)
image_list.append(torch.tensor(each))
image_list = torch.stack(image_list).permute(0, 3, 1, 2)
save_image(image_list, "sample.jpg", nrow=3,
normalize=True, value_range=(0, 255))
else:
print("The GUI is not tested yet. Please open an issue if you find bugs.")
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(
"## Edit Anything powered by ControlNet+SAM+BLIP2+Stable Diffusion")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(
label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(
label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1)
ddim_steps = gr.Slider(
label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1,
maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
mask_prompt = gr.Textbox(
label="Mask Prompt", value='best quality, extremely detailed')
a_prompt = gr.Textbox(
label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution,
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
block.launch(server_name='0.0.0.0')
|