File size: 7,611 Bytes
0c7479d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel

import open_clip
from ldm.util import default, count_params


class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError


class IdentityEncoder(AbstractEncoder):

    def encode(self, x):
        return x


class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)
        self.n_classes = n_classes
        self.ucg_rate = ucg_rate

    def forward(self, batch, key=None, disable_dropout=False):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        if self.ucg_rate > 0. and not disable_dropout:
            mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
            c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
            c = c.long()
        c = self.embedding(c)
        return c

    def get_unconditional_conditioning(self, bs, device="cuda"):
        uc_class = self.n_classes - 1  # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
        uc = torch.ones((bs,), device=device) * uc_class
        uc = {self.key: uc}
        return uc


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class FrozenT5Embedder(AbstractEncoder):
    """Uses the T5 transformer encoder for text"""
    def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
        super().__init__()
        self.tokenizer = T5Tokenizer.from_pretrained(version)
        self.transformer = T5EncoderModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length   # TODO: typical value?
        if freeze:
            self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)


class FrozenCLIPEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
                 freeze=True, layer="last", layer_idx=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPTextModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = layer_idx
        if layer == "hidden":
            assert layer_idx is not None
            assert 0 <= abs(layer_idx) <= 12

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
        return z

    def encode(self, text):
        return self(text)


class FrozenOpenCLIPEmbedder(AbstractEncoder):
    """
    Uses the OpenCLIP transformer encoder for text
    """
    LAYERS = [
        #"pooled",
        "last",
        "penultimate"
    ]
    def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
                 freeze=True, layer="last"):
        super().__init__()
        assert layer in self.LAYERS
        model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
        del model.visual
        self.model = model

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        if self.layer == "last":
            self.layer_idx = 0
        elif self.layer == "penultimate":
            self.layer_idx = 1
        else:
            raise NotImplementedError()

    def freeze(self):
        self.model = self.model.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        tokens = open_clip.tokenize(text)
        z = self.encode_with_transformer(tokens.to(self.device))
        return z

    def encode_with_transformer(self, text):
        x = self.model.token_embedding(text)  # [batch_size, n_ctx, d_model]
        x = x + self.model.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.model.ln_final(x)
        return x

    def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
        for i, r in enumerate(self.model.transformer.resblocks):
            if i == len(self.model.transformer.resblocks) - self.layer_idx:
                break
            if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(r, x, attn_mask)
            else:
                x = r(x, attn_mask=attn_mask)
        return x

    def encode(self, text):
        return self(text)


class FrozenCLIPT5Encoder(AbstractEncoder):
    def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
                 clip_max_length=77, t5_max_length=77):
        super().__init__()
        self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
        self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
        print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
              f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")

    def encode(self, text):
        return self(text)

    def forward(self, text):
        clip_z = self.clip_encoder.encode(text)
        t5_z = self.t5_encoder.encode(text)
        return [clip_z, t5_z]