Spaces:
Runtime error
Runtime error
File size: 7,101 Bytes
0c7479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import logging
import numpy as np
import itertools
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.config import configurable
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.layers import move_device_like, batched_nms
from detectron2.structures import ImageList, Boxes, Instances, BitMasks, ROIMasks
from detectron2.modeling.backbone import Backbone, build_backbone
from detectron2.modeling.proposal_generator import build_proposal_generator
from detectron2.config import get_cfg
import clip
from vlpart.text_encoder import build_text_encoder
from vlpart.swintransformer import build_swinbase_fpn_backbone
from vlpart.vlpart_roi_heads import build_vlpart_roi_heads
def build_vlpart(checkpoint=None):
cfg = get_cfg()
cfg.merge_from_list(['MODEL.RPN.IN_FEATURES', ["p2", "p3", "p4", "p5", "p6"],
'MODEL.ROI_HEADS.IN_FEATURES', ["p2", "p3", "p4", "p5"],
'MODEL.ROI_BOX_CASCADE_HEAD.IOUS', [0.5, 0.6, 0.7],
'MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG', True,
'MODEL.ROI_BOX_HEAD.NAME', "FastRCNNConvFCHead",
'MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION', 7,
'MODEL.ROI_BOX_HEAD.NUM_FC', 2,
'MODEL.ANCHOR_GENERATOR.SIZES', [[32], [64], [128], [256], [512]],
'MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS', [[0.5, 1.0, 2.0]],
])
backbone = build_swinbase_fpn_backbone()
vlpart = VLPart(
backbone=backbone,
proposal_generator=build_proposal_generator(cfg, backbone.output_shape()),
roi_heads=build_vlpart_roi_heads(cfg, backbone.output_shape()),
)
vlpart.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
vlpart.load_state_dict(state_dict['model'], strict=False)
return vlpart
class VLPart(nn.Module):
def __init__(
self,
backbone: Backbone,
proposal_generator: nn.Module,
roi_heads: nn.Module,
):
super().__init__()
self.backbone = backbone
self.proposal_generator = proposal_generator
self.roi_heads = roi_heads
self.text_encoder = build_text_encoder(pretrain=True, visual_type='RN50')
self.register_buffer("pixel_mean",
torch.tensor([123.675, 116.280, 103.530]).view(-1, 1, 1), False)
self.register_buffer("pixel_std",
torch.tensor([58.395, 57.120, 57.375]).view(-1, 1, 1), False)
@property
def device(self):
return self.pixel_mean.device
def _move_to_current_device(self, x):
return move_device_like(x, self.pixel_mean)
def get_text_embeddings(self, vocabulary, prefix_prompt='a '):
vocabulary = vocabulary.split('.')
texts = [prefix_prompt + x.lower().replace(':', ' ') for x in vocabulary]
texts_aug = texts + ['background']
emb = self.text_encoder(texts_aug).permute(1, 0)
emb = F.normalize(emb, p=2, dim=0)
return emb
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
do_postprocess: bool = True,
text_prompt: str = 'dog',
):
assert not self.training
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
proposals, _ = self.proposal_generator(images, features)
text_embed = self.get_text_embeddings(text_prompt)
results, _ = self.roi_heads(images, features, proposals, text_embed)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
max_shape = images.tensor.shape[2:]
return VLPart._postprocess(results, batched_inputs, images.image_sizes, max_shape)
else:
return results
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Normalize, pad and batch the input images.
"""
original_images = [self._move_to_current_device(x["image"]) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in original_images]
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
return images
@staticmethod
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]], image_sizes, max_shape):
"""
Rescale the output instances to the target size.
"""
# note: private function; subject to changes
processed_results = []
for results_per_image, input_per_image, image_size in zip(
instances, batched_inputs, image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = custom_detector_postprocess(results_per_image, height, width, max_shape)
processed_results.append({"instances": r})
return processed_results
def custom_detector_postprocess(
results: Instances, output_height: int, output_width: int,
max_shape, mask_threshold: float = 0.5
):
"""
detector_postprocess with support on global_masks
"""
if isinstance(output_width, torch.Tensor):
# This shape might (but not necessarily) be tensors during tracing.
# Converts integer tensors to float temporaries to ensure true
# division is performed when computing scale_x and scale_y.
output_width_tmp = output_width.float()
output_height_tmp = output_height.float()
new_size = torch.stack([output_height, output_width])
else:
new_size = (output_height, output_width)
output_width_tmp = output_width
output_height_tmp = output_height
scale_x, scale_y = (
output_width_tmp / results.image_size[1],
output_height_tmp / results.image_size[0],
)
resized_h, resized_w = results.image_size
results = Instances(new_size, **results.get_fields())
if results.has("pred_boxes"):
output_boxes = results.pred_boxes
else:
output_boxes = None
assert output_boxes is not None, "Predictions must contain boxes!"
output_boxes.scale(scale_x, scale_y)
output_boxes.clip(results.image_size)
results = results[output_boxes.nonempty()]
if results.has("pred_masks"):
if isinstance(results.pred_masks, ROIMasks):
roi_masks = results.pred_masks
else:
# pred_masks is a tensor of shape (N, 1, M, M)
roi_masks = ROIMasks(results.pred_masks[:, 0, :, :])
results.pred_masks = roi_masks.to_bitmasks(
results.pred_boxes, output_height, output_width, mask_threshold
).tensor # TODO return ROIMasks/BitMask object in the future
return results
|