Spaces:
Runtime error
Runtime error
File size: 9,750 Bytes
75660bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#--- anomaly detection - unsupervised page
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import lib.claims as libClaims
import lib.providers as libProviders
import lib.utils as libUtils
import sys
description = "Anomaly Detection - Unsupervised"
m_kblnTraceOn = False #--- enable/disable module level tracing
def run():
#--- note: in python, you need to specify global scope for fxns to access module-level variables
global m_kblnTraceOn
print("\nINFO (lit_about.run) loading ", description, " page ...")
try:
#--- page settings
if (m_kblnTraceOn): print("TRACE (litAnomUnSuperv.run): Initialize Page Settings ...")
st.header("Claims Anomalies - Unsupervised Approach (KMeans)")
#--- provide file drag/drop capability
m_blnDisableDragDrop = False
if(not m_blnDisableDragDrop):
#btnSave = st.button("Save")
pklDropped = st.file_uploader("Upload a Claims Dataset", type=["pkl"])
m_blnDisableDragDrop = (pklDropped is None)
#--- show: raw claims data analysis
if (m_kblnTraceOn): print("TRACE (litAnomUnSuperv.run): load raw claims data ...")
if (m_blnDisableDragDrop):
pdfClaims = libClaims.load_claims(False)
else:
pdfClaims = pd.read_pickle(pklDropped)
#--- show: raw claims data analysis
if (m_kblnTraceOn): print("TRACE (litAnomUnsuperv.run): Show Raw Claims Dataframe ...")
pdfClaims = libClaims.load_claims(False)
#--- get unsupervised predictions
#pdfFeatEng = libClaims.do_featEng(pdfClaims)
pdfPred = libClaims.get_kmeansPredict(pdfClaims)
pdfSample = pdfPred.sample(100)
pdfSample['providerId'] = pdfSample['Provider'].str[3:].astype(np.float64)
#--- save this file locally as a pkl
#btnSave_testFile(pdfClaims, pdfPred)
#--- table of claims and clusters, sorted by InscClaimAmt Reimbursed
pdfTopClaims = pdfSample.sort_values(by=["cluster", "InscClaimAmtReimbursed"], ascending=False)
if (m_kblnTraceOn): print("TRACE (litAnomUnsuperv.run): Show $claims reimbursed by cluster ...")
st.markdown("(Top) Ins Claim Reimbursed by Cluster")
st.dataframe(pdfTopClaims)
#--- chart cluster data distribution
chart_clusterDistr(pdfSample)
col1, col2, col3 = st.columns(3)
#--- chart KMeans clusters": InscClaimAmtReimbursed
#chart_KMeansClusters(pdfSample, "Age", "InscClaimAmtReimbursed", col1)
#chart_KMeansClusters(pdfSample, "providerId", "InscClaimAmtReimbursed", col2)
chart_KMeansClusters(pdfSample, "providerId", "AdmittedDays", col1)
chart_KMeansClusters(pdfSample, "providerId", "DeductibleAmtPaid", col2)
chart_KMeansClusters(pdfSample, "providerId", "InscClaimAmtReimbursed", col3)
chart_KMeansClusters(pdfSample, "providerId", "ChronicCond_KidneyDisease", col1)
chart_KMeansClusters(pdfSample, "providerId", "ChronicCond_Heartfailure", col2)
chart_KMeansClusters(pdfSample, "providerId", "ChronicCond_ObstrPulmonary", col3)
chart_KMeansClusters(pdfSample, "AdmittedDays", "DeductibleAmtPaid", col1)
chart_KMeansClusters(pdfSample, "AdmittedDays", "InscClaimAmtReimbursed", col2)
chart_KMeansClusters(pdfSample, "DeductibleAmtPaid", "InscClaimAmtReimbursed", col3)
#--- chart cluster bars
#chart_KMeansBars(pdfSample, "cluster", "InscClaimAmtReimbursed", col1)
#chart_KMeansBars(pdfSample, "cluster", "DeductibleAmtPaid", col2)
#chart_KMeansBars(pdfSample, "cluster", "IPAnnualReimbursementAmt", col1)
#chart_KMeansBars(pdfSample, "cluster", "IPAnnualDeductibleAmt", col2)
#chart_KMeansBars(pdfSample, "cluster", "OPAnnualReimbursementAmt", col1)
#chart_KMeansBars(pdfSample, "cluster", "OPAnnualDeductibleAmt", col2)
#chart_KMeansBars(pdfSample, "cluster", "ChronicCond_Heartfailure", col1)
#chart_KMeansBars(pdfSample, "cluster", "ChronicCond_KidneyDisease", col2)
except TypeError as e:
print("ERROR (litAnomUnsuperv.run_typeError): ", e)
except:
e = sys.exc_info()
print("ERROR (litAnomUnsuperv.run_genError): ", e)
def chart_clusterDistr(pdfSample):
#pdfClustDistr = pdfSample['cluster'].value_counts()
pdfBar = pdfSample
pdfCluster0 = pdfBar[pdfBar['cluster'] == 0]
pdfCluster1 = pdfBar[pdfBar['cluster'] == 1]
pdfCluster2 = pdfBar[pdfBar['cluster'] == 2]
kstrTitle = "(KMeans Clusters) Claims data"
#--- chart
fig = go.Figure(
layout=dict(
legend=dict(groupclick="toggleitem"),
xaxis=dict(title='cluster'),
yaxis=dict(title='#data points')
)
)
fig.add_trace(
go.Bar(
x=pdfCluster0['cluster'],
y=pdfCluster0['cluster'].value_counts(),
name='cluster0'
)
)
if (pdfCluster1.shape[0]>0):
fig.add_trace(
go.Bar(
x=pdfCluster1['cluster'],
y=pdfCluster1['cluster'].value_counts(),
name='cluster1'
))
if (pdfCluster2.shape[0]>0):
fig.add_trace(
go.Bar(
x=pdfCluster2['cluster'],
y=pdfCluster2['cluster'].value_counts(),
name='cluster2'
))
st.plotly_chart(fig, use_container_width=True)
def chart_KMeansClusters(pdfSample, strXFeature, strYFeature, stCol):
pdfScatter = pdfSample
pdfCluster0 = pdfScatter[pdfScatter['cluster'] == 0]
pdfCluster1 = pdfScatter[pdfScatter['cluster'] == 1]
pdfCluster2 = pdfScatter[pdfScatter['cluster'] == 2]
kstrTitle = "(KMeans Clusters) Claims data"
#--- chart
fig = go.Figure(
layout=dict(
legend=dict(groupclick="toggleitem"),
xaxis=dict(title=strXFeature),
yaxis=dict(title=strYFeature)
)
)
fig.add_trace(
go.Scatter(
x=pdfCluster0[strXFeature],
y=pdfCluster0[strYFeature],
text="claimId: " + pdfCluster0['ClaimID'],
mode='markers',
name='cluster0'
)
)
if (pdfCluster1.shape[0]>0):
fig.add_trace(
go.Scatter(
x=pdfCluster1[strXFeature],
y=pdfCluster1[strYFeature],
mode='markers',
name='cluster1'
))
if (pdfCluster2.shape[0]>0):
fig.add_trace(
go.Scatter(
x=pdfCluster2[strXFeature],
y=pdfCluster2[strYFeature],
mode='markers',
name='cluster2'
))
stCol.plotly_chart(fig, use_container_width=True)
def chart_KMeansBars(pdfSample, strXFeature, strYFeature, stCol):
pdfBar = pdfSample
pdfCluster0 = pdfBar[pdfBar['cluster'] == 0]
pdfCluster1 = pdfBar[pdfBar['cluster'] == 1]
pdfCluster2 = pdfBar[pdfBar['cluster'] == 2]
kstrTitle = "(KMeans Clusters) Claims data"
#--- chart
fig = go.Figure(
layout=dict(
legend=dict(groupclick="toggleitem"),
xaxis=dict(title=strXFeature),
yaxis=dict(title=strYFeature)
)
)
fig.add_trace(
go.Bar(
x=pdfCluster0[strXFeature],
y=pdfCluster0[strYFeature],
name='cluster0'
)
)
if (pdfCluster1.shape[0]>0):
fig.add_trace(
go.Bar(
x=pdfCluster1[strXFeature],
y=pdfCluster1[strYFeature],
name='cluster1'
))
if (pdfCluster2.shape[0]>0):
fig.add_trace(
go.Bar(
x=pdfCluster2[strXFeature],
y=pdfCluster2[strYFeature],
name='cluster2'
))
stCol.plotly_chart(fig, use_container_width=True)
def btnSave_testFile(pdfClaims, pdfPred):
#--- get all claims for all anoms
""" print("TRACE (lit_anom_unsuperv.btnSave_testFile) query anoms ... ", pdfPred.head(10))
pdfAnomClaims = pdfPred[pdfPred['hasAnom?'] > 0]
#pdfAnomProv = pdfAnomProv['Provider']
#--- filter claims by anomProviders
print("TRACE (lit_anom_unsuperv.btnSave_testFile) filter claims ... ")
pdfClaimAnom = pdfClaims[pdfClaims['Provider'].isin(pdfAnomProv['Provider'])]
pdfClaimNoAnom = pdfClaims[~pdfClaims['Provider'].isin(pdfAnomProv['Provider'])]
lngNumAnoms = len(pdfClaimAnom.index)
lngNumOk = len(pdfClaimNoAnom.index)
print("TRACE (lit_anom_unsuperv.btnSave_testFile) #anoms: ", lngNumAnoms, ", !anoms: ", lngNumOk)
#--- get a sample for remaining records
print("TRACE (lit_anom_unsuperv.btnSave_testFile) sampling claims ... ")
pdfSave = pd.concat([pdfClaimAnom.sample(frac=0.6), pdfClaimNoAnom.sample(frac=0.1)]) """
pdfSave = pdfClaims.sample(frac=0.1)
print("TRACE (lit_anom_unsuperv.btnSave_testFile) saving ... ")
saveProviderTestData(pdfSave)
def saveProviderTestData(pdfTestData):
#--- save the file
from datetime import date
import time
import pickle
strDteNow = date.today().strftime('%Y%m%d')
strTimeNow = time.strftime('%H%M%S')
strProvTestFile = libUtils.pth_data + strDteNow + strTimeNow + "_claimsTestSample.pkl"
#pd.to_pickle(pdfClaims.sample(200), strProvTestFile, protocol=pickle.HIGHEST_PROTOCOL)
pdfTestData.to_pickle(strProvTestFile, protocol=pickle.HIGHEST_PROTOCOL)
|