Spaces:
Running
Running
File size: 26,228 Bytes
9a83644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from tokenizer import get_tokenizer
try:
from GPTQ import GenericGPTQRunner, InputRecorder
from eval import get_task_dict, evaluate, lm_eval
except:
pass
from model import Transformer
##### Quantization Primitives ######
def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# assumes symmetric quantization
# assumes axis == 0
# assumes dense memory format
# TODO(future): relax ^ as needed
# default setup for affine quantization of activations
eps = torch.finfo(torch.float32).eps
# get min and max
min_val, max_val = torch.aminmax(x, dim=1)
# calculate scales and zero_points based on min and max
# reference: https://fburl.com/code/srbiybme
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
device = min_val_neg.device
# reference: https://fburl.com/code/4wll53rk
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scales = max_val_pos / (float(quant_max - quant_min) / 2)
# ensure scales is the same dtype as the original tensor
scales = torch.clamp(scales, min=eps).to(x.dtype)
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
# quantize based on qmin/qmax/scales/zp
# reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
x_div = x / scales.unsqueeze(-1)
x_round = torch.round(x_div)
x_zp = x_round + zero_points.unsqueeze(-1)
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
return quant, scales, zero_points
def get_group_qparams(w, n_bit=4, groupsize=128):
# needed for GPTQ with padding
if groupsize > w.shape[-1]:
groupsize = w.shape[-1]
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
torch.bfloat16
).reshape(w.shape[0], -1)
def pack_scales_and_zeros(scales, zeros):
assert scales.shape == zeros.shape
assert scales.dtype == torch.bfloat16
assert zeros.dtype == torch.bfloat16
return (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
)
.transpose(0, 1)
.contiguous()
)
def unpack_scales_and_zeros(scales_and_zeros):
assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2
assert scales_and_zeros.dtype == torch.float
return torch.split(scales_and_zeros.transpose(0, 1), 1, 2)
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
assert groupsize > 1
# needed for GPTQ single column quantize
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
groupsize = w.shape[-1]
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
min_val = zeros - scales * (2 ** (n_bit - 1))
max_int = 2**n_bit - 1
min_int = 0
w_int32 = (
to_quant.sub(min_val)
.div(scales)
.round()
.clamp_(min_int, max_int)
.to(torch.int32)
.reshape_as(w)
)
return w_int32
def group_quantize_tensor(w, n_bit=4, groupsize=128):
scales, zeros = get_group_qparams(w, n_bit, groupsize)
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
return w_int32, scales_and_zeros
def group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit=4, groupsize=128
):
assert groupsize > 1
# needed for GPTQ single column dequantize
if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1:
groupsize = w_int32.shape[-1]
assert w_int32.shape[-1] % groupsize == 0
assert w_int32.dim() == 2
w_int32_grouped = w_int32.reshape(-1, groupsize)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
w_dq = (
w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32)
)
return w_dq
def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128):
scales, zeros = unpack_scales_and_zeros(scales_and_zeros)
return group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit, groupsize
)
class QuantHandler:
def __init__(self, mod):
self.mod = mod
def create_quantized_state_dict(self) -> "StateDict":
pass
def convert_for_runtime(self) -> "nn.Module":
pass
class GPTQQuantHandler(QuantHandler):
"""
This class implements a GPTQ QuantHandler that can be used to apply GPTQ to a model in concert with the GenericGPTQRunner class.
Unlike the base QuantHandler class, the user does not need to implement the create_quantized_state_dict, instead they have to reimplement
__init__ such that it defines the functions for the quantization mode. User is expected to reimplement convert_for_runtime.
The following functions (which must be defined in __init__) are used to define the quantization mode for both GPTQ and
create_quantized_state_dict. Here is a description of each function.
get_qparams_func:
A function that calculates the quantization qparams for an input tensor.
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
qparams: it can have any format but will need to be handled by the other defined functions below.
quantize_func:
A function that applies quantization to an input tensor. It should be noted
that this function needs to be able to handle quantizing the entire weight tensor, a single group,
or a single column.
Args:
weight: A 2d weight tensor with non-integer dtype.
qparams: the output from get_qparams_func
Returns:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
dequantize_func:
A function that dequantizes an input quantized weight tensor. It should be noted
that this function needs to be able to handle dequantizing the entire weight tensor, a single group,
or a single column.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
weight: A 2d weight tensor with non-integer dtype.
combine_qparams_list_func:
A function that combines several qparams into one qparam.
Args:
qparams_list: a list of qparams objects, each obtained by calling get_qparams_func
on a single group from a weight tensor
Returns:
qparams: an object of the same format as the qparams above.
skip_layer_func:
A function that determines which linear layers should be skipped during GPTQ
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
skip: boolean indicating whether layer should be skipped
make_names_and_values_dict_func:
A function that prepares the qparams and quantized_weight and creates a dictionary indicating how they
should be inserted into the state_dict. Generally any packing of the weight and qparams should be done here.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
names_and_values_dict: a dictionary mapping the name of the parameters of the quantized module to the
corresponding quantized weights and qparams.
"""
def __init__(self):
assert self.mod is not None
assert self.get_qparams_func is not None
assert self.quantize_func is not None
assert self.dequantize_func is not None
assert self.combine_qparams_list_func is not None
assert self.make_names_and_values_dict_func is not None
@staticmethod
def get_inputs(model, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs) -> "MultiInput":
input_recorder = InputRecorder(
model,
tokenizer,
calibration_seq_length,
pad_calibration_inputs,
)
try:
lm_eval.tasks.initialize_tasks()
except:
pass
task_dict = get_task_dict(calibration_tasks)
print("Obtaining GPTQ calibration inputs on: ", calibration_tasks)
evaluate(
input_recorder,
task_dict,
limit=calibration_limit,
)
inputs = input_recorder.get_recorded_inputs()
assert inputs is not None, (
f"No inputs were collected, use a task other than {calibration_tasks}, "+
f"use option pad_calibration_inputs, or decrease calibration_sequence_length (currently "+
f"{calibration_seq_length})"
)
print(f"Obtained {len(inputs[0].values)} calibration samples")
return inputs
@torch.no_grad()
def create_quantized_state_dict(
self,
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
) -> "StateDict":
inputs = GPTQQuantHandler.get_inputs(self.mod, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs)
print("Tracing model for GPTQ")
GPTQ_runner = GenericGPTQRunner(
self.mod,
inputs,
blocksize,
percdamp,
groupsize,
).configure_quantization_mode(
self.get_qparams_func,
self.quantize_func,
self.dequantize_func,
self.combine_qparams_list_func,
self.make_names_and_values_dict_func,
self.skip_layer_func
)
print("Applying GPTQ to weights")
GPTQ_runner.run()
return GPTQ_runner.get_quantized_state_dict()
def convert_for_runtime(self) -> "nn.Module":
pass
##### Weight-only int8 per-channel quantized code ######
def replace_linear_weight_only_int8_per_channel(module):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
setattr(module, name, WeightOnlyInt8Linear(child.in_features, child.out_features))
else:
replace_linear_weight_only_int8_per_channel(child)
class WeightOnlyInt8QuantHandler:
def __init__(self, mod):
self.mod = mod
@torch.no_grad()
def create_quantized_state_dict(self):
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
int8_weight, scales, _ = dynamically_quantize_per_channel(mod.weight.float(), -128, 127, torch.int8)
cur_state_dict[f"{fqn}.weight"] = int8_weight
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
return cur_state_dict
def convert_for_runtime(self):
replace_linear_weight_only_int8_per_channel(self.mod)
return self.mod
class WeightOnlyInt8Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales
##### weight only int4 per channel groupwise quantized code ######
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
weight_int32, scales_and_zeros = group_quantize_tensor(
weight_bf16, n_bit=4, groupsize=groupsize
)
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles)
return weight_int4pack, scales_and_zeros
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
origin_x_size = x.size()
x = x.reshape(-1, origin_x_size[-1])
c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros)
new_shape = origin_x_size[:-1] + (out_features,)
c = c.reshape(new_shape)
return c
def _check_linear_int4_k(k, groupsize = 1, inner_k_tiles = 1):
return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0
def replace_linear_int4(module, groupsize, inner_k_tiles, padding):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles):
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=False,
))
elif padding:
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=True,
))
else:
replace_linear_int4(child, groupsize, inner_k_tiles, padding)
class WeightOnlyInt4QuantHandler:
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
assert groupsize in [32, 64, 128, 256]
assert inner_k_tiles in [2, 4, 8]
@torch.no_grad()
def create_quantized_state_dict(self, use_cuda = True):
if use_cuda:
device="cuda"
else:
device="cpu"
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
assert not mod.bias
out_features = mod.out_features
in_features = mod.in_features
assert out_features % 8 == 0, "require out_features % 8 == 0"
print(f"linear: {fqn}, in={in_features}, out={out_features}")
weight = mod.weight.data
if not _check_linear_int4_k(in_features, self.groupsize, self.inner_k_tiles):
if self.padding:
from model import find_multiple
import torch.nn.functional as F
print(f"warning: {fqn} is padded to satisfy in_features % 1024 == 0")
padded_in_features = find_multiple(in_features, 1024)
weight = F.pad(weight, pad=(0, padded_in_features - in_features))
else:
print(f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, " +
"and that groupsize and inner_k_tiles*16 evenly divide into it")
continue
weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros(
weight.to(torch.bfloat16).to(device=device), self.groupsize, self.inner_k_tiles
)
cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to('cpu')
cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to('cpu')
return cur_state_dict
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4GPTQQuantHandler(GPTQQuantHandler):
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
from model import find_multiple
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
self.get_qparams_func = lambda w: get_group_qparams(w, 4, groupsize)
self.quantize_func = lambda w, qparams: \
group_quantize_tensor_from_qparams(w, qparams[0], qparams[1], 4, groupsize)
self.dequantize_func = lambda q, qparams: \
group_dequantize_tensor_from_qparams(q, qparams[0], qparams[1], 4, groupsize).float()
self.combine_qparams_list_func = lambda qparams_list: \
[torch.cat(x, dim=1) for x in zip(*qparams_list)]
# skip unless padding=True or its correctly sized
self.skip_layer_func = lambda linear_weight: not (
_check_linear_int4_k(linear_weight.shape[-1], groupsize, inner_k_tiles) or padding
)
# we need to do the padding here, both for q and the qparams if necessary
def make_names_and_values_dict_func(q, qparams):
k = q.shape[1]
new_k = find_multiple(k, 1024)
# how much we need to pad the weight
delta_k = new_k - q.shape[1]
final_q = torch.ops.aten._convert_weight_to_int4pack(F.pad(q, pad=(0, delta_k)), inner_k_tiles)
scales_and_zeros = pack_scales_and_zeros(*qparams)
# how many new groups we need for padded weight
delta_groups = new_k // groupsize - scales_and_zeros.shape[0]
final_s_and_z = F.pad(scales_and_zeros, pad=(0,0,0,0,0, delta_groups), value=1)
return {"weight": final_q, "scales_and_zeros": final_s_and_z}
self.make_names_and_values_dict_func = make_names_and_values_dict_func
super().__init__()
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self, in_features: int, out_features: int,
bias=True, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8, padding: bool = True,
) -> None:
super().__init__()
self.padding = padding
if padding:
from model import find_multiple
self.origin_in_features = in_features
in_features = find_multiple(in_features, 1024)
self.in_features = in_features
self.out_features = out_features
assert not bias, "require bias=False"
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
assert out_features % 8 == 0, "require out_features % 8 == 0"
assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0"
self.register_buffer(
"weight",
torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32)
)
self.register_buffer(
"scales_and_zeros",
torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = input.to(torch.bfloat16)
if self.padding:
import torch.nn.functional as F
input = F.pad(input, pad=(0, self.in_features - self.origin_in_features))
return linear_forward_int4(
input,
self.weight, self.scales_and_zeros, self.out_features, self.groupsize
)
def quantize(
checkpoint_path: Path = Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"),
mode: str = 'int8',
# following arguments only available when setting int4 quantization.
groupsize: int = 128,
# following arguments only used for GPTQ
calibration_tasks: list = ["hellaswag"],
calibration_limit: int = 1000,
calibration_seq_length: int = 100,
pad_calibration_inputs: bool = False,
percdamp: float = .01,
blocksize: int = 128,
label: str = '',
) -> None:
assert checkpoint_path.is_file(), checkpoint_path
device = 'cpu'
precision = torch.bfloat16
print("Loading model ...")
t0 = time.time()
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
model.load_state_dict(checkpoint, assign=True)
model = model.to(dtype=precision, device=device)
if mode == 'int8':
print("Quantizing model weights for int8 weight-only symmetric per-channel quantization")
quant_handler = WeightOnlyInt8QuantHandler(model)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f'{label}int8.pth')
elif mode == 'int4':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization")
quant_handler = WeightOnlyInt4QuantHandler(model, groupsize)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4.g{groupsize}.pth")
elif mode == 'int4-gptq':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization using GPTQ...")
quant_handler = WeightOnlyInt4GPTQQuantHandler(model, groupsize)
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
quantized_state_dict = quant_handler.create_quantized_state_dict(
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs
)
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4-gptq.g{groupsize}.pth")
else:
raise ValueError(f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]")
quantize_path = dir_name / new_base_name
print(f"Writing quantized weights to {quantize_path}")
quantize_path.unlink(missing_ok=True) # remove existing file if one already there
torch.save(quantized_state_dict, quantize_path)
print(f"Quantization complete took {time.time() - t0:.02f} seconds")
return
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Quantize a model.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Path to the model checkpoint to be quantized.')
parser.add_argument('--mode', '-q', type=str, default='int8', choices=['int8', 'int4', 'int4-gptq'], help='type of quantization to perform')
parser.add_argument('--groupsize', type=int, default=32, help='Group size for int4 quantization.')
parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq')
parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration')
parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration')
parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower')
parser.add_argument('--percdamp', type=float, default=.01, help='gptq percentage dampening')
parser.add_argument('--blocksize', type=int, default=128, help='blocksize for gptq')
parser.add_argument('--label', type=str, default='_', help='label to add to output filename')
args = parser.parse_args()
quantize(args.checkpoint_path, args.mode, args.groupsize, args.calibration_tasks, args.calibration_limit, args.calibration_seq_length, args.pad_calibration_inputs, args.percdamp, args.blocksize, args.label)
|