File size: 7,841 Bytes
81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad 81a6746 1e8aaad cccd587 2505e32 cccd587 2505e32 cccd587 2505e32 cccd587 db66315 cccd587 085a8f2 cccd587 db66315 cccd587 db66315 cccd587 db66315 cccd587 db66315 cccd587 db66315 cccd587 81a6746 cccd587 81a6746 7573f0c 088ae0b 49dcd68 cccd587 81a6746 db66315 81a6746 db66315 81a6746 0e3b061 81a6746 0e3b061 81a6746 f1f1c76 7651b25 81a6746 0e3b061 81a6746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# import os
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# token = os.getenv("HF_TOKEN")
# client = InferenceClient("emilyalsentzer/Bio_ClinicalBERT", token=token)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
# import gradio as gr
# from langdetect import detect
# from transformers import pipeline
# from qdrant_client import QdrantClient
# from qdrant_client.models import VectorParams, Distance
# from langchain.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# from langchain.vectorstores import Qdrant
# from transformers import GenerationConfig, AutoTokenizer, AutoModelForCausalLM
# from langchain.embeddings import HuggingFaceEmbeddings
# import os
# QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
# QDRANT_URL = os.getenv("QDRANT_URL")
# # Define model path
# model_name = "FreedomIntelligence/Apollo-7B"
# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# # Enable padding token if missing
# tokenizer.pad_token = tokenizer.eos_token
# # Set up Qdrant vector store
# qdrant_client = QdrantClient(url=QDRANT_URL, api_key = QDRANT_API_KEY)
# vector_size = 768
# embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
# qdrant_vectorstore = Qdrant(
# client=qdrant_client,
# collection_name="arabic_rag_collection",
# embeddings=embedding
# )
# # Generation config
# generation_config = GenerationConfig(
# max_new_tokens=150,
# temperature=0.2,
# top_k=20,
# do_sample=True,
# top_p=0.7,
# repetition_penalty=1.3,
# )
# # Set up HuggingFace Pipeline
# llm_pipeline = pipeline(
# model=model,
# tokenizer=tokenizer,
# task="text-generation",
# generation_config=generation_config,
# )
# llm = HuggingFacePipeline(pipeline=llm_pipeline)
# # Set up QA Chain
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=qdrant_vectorstore.as_retriever(search_kwargs={"k": 3}),
# chain_type="stuff"
# )
# # Generate prompt based on language
# def generate_prompt(question):
# lang = detect(question)
# if lang == "ar":
# return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
# وتأكد من ان:
# - عدم تكرار أي نقطة أو عبارة أو كلمة
# - وضوح وسلاسة كل نقطة
# - تجنب الحشو والعبارات الزائدة-
# السؤال: {question}
# الإجابة:
# """
# else:
# return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
# Question: {question}
# Answer:"""
# # Define Gradio interface function
# def medical_chatbot(question):
# formatted_question = generate_prompt(question)
# answer = qa_chain.run(formatted_question)
# return answer
# # Set up Gradio interface
# iface = gr.Interface(
# fn=medical_chatbot,
# inputs=gr.Textbox(label="Ask a Medical Question", placeholder="Type your question here..."),
# outputs=gr.Textbox(label="Answer", interactive=False),
# title="Medical Chatbot",
# description="Ask medical questions and get detailed answers in Arabic or English.",
# theme="compact"
# )
# # Launch Gradio interface
# if __name__ == "__main__":
# iface.launch()
import gradio as gr
from langdetect import detect
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, GenerationConfig
import torch
# Load model and tokenizer
# model_name = "FreedomIntelligence/Apollo-7B"
# model_name = "emilyalsentzer/Bio_ClinicalBERT"
model_name = "FreedomIntelligence/Apollo-2B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.2,
top_k=20,
do_sample=True,
top_p=0.7,
repetition_penalty=1.3,
)
# Create generation pipeline
pipe = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
device=model.device.index if torch.cuda.is_available() else "cpu"
)
# Prompt formatter based on language
def generate_prompt(message, history):
lang = detect(message)
if lang == "ar":
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة
السؤال: {message}
الإجابة:"""
else:
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If information is missing, rely on your prior medical knowledge:
Question: {message}
Answer:"""
# Chat function
def chat_fn(message, history):
prompt = generate_prompt(message, history)
response = pipe(prompt,
max_new_tokens=512,
temperature=0.7,
do_sample = True,
top_p=0.9)[0]['generated_text']
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
return answer
# Gradio ChatInterface
demo = gr.ChatInterface(
fn=chat_fn,
title="🩺 Apollo Medical Chatbot",
description="Multilingual (Arabic & English) medical Q&A chatbot powered by Apollo-7B model inference.",
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)
|