File size: 16,135 Bytes
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0074dc2
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
ae828fb
 
 
 
 
1b908c6
 
 
ae828fb
87179d2
 
0074dc2
 
 
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae828fb
87179d2
 
 
 
 
 
 
 
e16ea6c
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3adc
3ec62a2
 
e3a3adc
3ec62a2
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27df4b5
 
 
87179d2
27df4b5
 
1b908c6
87179d2
 
 
 
 
78c4dda
 
 
 
 
 
 
 
87179d2
 
78c4dda
87179d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# import torch
# from fastapi import FastAPI, Request, HTTPException, status
# import uvicorn
# from pydantic import BaseModel, Field
# from langchain.chains import RetrievalQA
# from langchain_huggingface import HuggingFacePipeline
# from langchain.vectorstores import Qdrant
# from langchain.embeddings import HuggingFaceEmbeddings
# from transformers import pipeline
# from qdrant_client import QdrantClient
# from llama_cpp import Llama
# from langchain_huggingface import HuggingFacePipeline
# from langdetect import detect
# from contextlib import asynccontextmanager
# import logging
# from langchain.callbacks.manager import CallbackManager
# from langchain.callbacks.base import BaseCallbackHandler 
# import asyncio
# from contextlib import asynccontextmanager
# import logging
# from huggingface_hub import hf_hub_download
# from langchain.llms import LlamaCpp


# # === CONFIGURATION === #
# MODEL_NAME = "FreedomIntelligence/Apollo-7B"
# EMBEDDING_MODEL = "Omartificial-Intelligence-Space/GATE-AraBert-v1"
# QDRANT_URL = "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333"
# QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4"
# COLLECTION_NAME = "arabic_rag_collection"

# # === INIT APP === #
# # Add this line to enable debug logging
# logging.basicConfig(level=logging.DEBUG)

# app = FastAPI()

# # === LOAD MODEL === #
# # model, tokenizer = FastLanguageModel.from_pretrained(
# #     model_name=MODEL_NAME,
# #     max_seq_length=2048,
# #     dtype=torch.float16,
# #     load_in_4bit=True
# # )

# # from transformers import AutoTokenizer, AutoModelForCausalLM

# # tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/Apollo-7B")
# # model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/Apollo-7B")


# # llm = Llama.from_pretrained(
# # 	repo_id="FreedomIntelligence/Apollo-7B-GGUF",
# # 	filename="Apollo-7B-q8_0.gguf",
# # )

# # model = Llama.from_pretrained(
# #     repo_id="FreedomIntelligence/Apollo-7B-GGUF",
# #     filename="Apollo-7B.Q4_K_S.gguf",  # Choose the correct quantization level
# #     n_ctx=1024,  # Adjust context length as per your use case
# #     n_threads=4,  # Adjust the number of threads based on your environment
# #     chat_format="llama-2"  # Or None depending on the model
# # )

# # # Define the HuggingFacePipeline to work with the model
# # llm_pipeline = pipeline(
# #     model=model,
# #     task="text-generation",
# #     max_new_tokens=1024,
# #     temperature=0.3
# # )


# model_path = hf_hub_download(
#     repo_id="FreedomIntelligence/Apollo-7B-GGUF",
#     filename="Apollo-7B.Q4_K_S.gguf", 
#     local_dir="./models",
#     local_dir_use_symlinks=False
# )
# # https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF/blob/main/Apollo-7B.Q4_K_S.gguf

# llm = LlamaCpp(
#     model_path=model_path, 
#     temperature=0.3,
#     max_tokens=200,    
#     n_ctx=1024,       
#     top_p=0.9,
#     top_k=40,          
#     n_threads=1,       
#     n_batch=1,         
#     low_vram=True,     
#     f16_kv=True,       
#     verbose=True       
# )

# # Wrap it in HuggingFacePipeline
# # hf_llm = HuggingFacePipeline(pipeline=llm)

# # === EMBEDDINGS AND VECTOR STORE === #
# embedding = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
# qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
# qdrant_vectorstore = Qdrant(
#     client=qdrant_client,
#     collection_name=COLLECTION_NAME,
#     embeddings=embedding,
# )

# retriever = qdrant_vectorstore.as_retriever(search_kwargs={"k": 3})
# qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")

# # llm_pipeline = pipeline(
# #     model=model,
# #     tokenizer=tokenizer,
# #     task="text-generation",
# #     max_new_tokens=1024,
# #     temperature=0.3,
# # )

# # llm = HuggingFacePipeline(pipeline=llm_pipeline)

# # # === EMBEDDINGS + VECTORSTORE === #
# # embedding = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
# # qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
# # qdrant_vectorstore = Qdrant(
# #     client=qdrant_client,
# #     collection_name=COLLECTION_NAME,
# #     embeddings=embedding,
# # )

# # retriever = qdrant_vectorstore.as_retriever(search_kwargs={"k": 3})
# # qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")

# def generate_prompt(question):
#     lang = detect(question)
#     if lang == "ar":
#         return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. 
#  وتأكد من ان:
# - عدم تكرار أي نقطة أو عبارة أو كلمة
# - وضوح وسلاسة كل نقطة
# - تجنب الحشو والعبارات الزائدة-

# السؤال: {question}
# الإجابة:
# """
        
#     else:
#         return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
# Question: {question}
# Answer:"""



# # === API INPUT/OUTPUT === #
# class Query(BaseModel):
#     question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)


# # Setup logging
# logging.basicConfig(level=logging.DEBUG)
# logger = logging.getLogger(__name__)

# # Create startup and shutdown events
# @asynccontextmanager
# async def lifespan(app: FastAPI):
#     # Startup: Initialize QA chain and other resources
#     global qa_chain
#     try:
#         # ...existing qa_chain initialization code...
#         logger.info("Successfully initialized QA chain")
#         yield
#     except Exception as e:
#         logger.error(f"Failed to initialize QA chain: {e}")
#         raise
#     finally:
#         # Cleanup
#         if 'qa_chain' in globals():
#             del qa_chain
#         if 'qdrant_client' in globals():
#             await qdrant_client.close()
#         logger.info("Cleanup completed")

# # Update FastAPI initialization
# app = FastAPI(lifespan=lifespan)

# @app.get("/")
# async def root():
#     return {"message": "API is running!"}

# # the ask endpoint
# @app.post("/ask")
# async def ask(query: Query):
#     try:
#         logger.debug(f"Processing question: {query.question}")
#         prompt = generate_prompt(query.question)
        
#         # Create callback with longer timeout
#         timeout_callback = TimeoutCallback(timeout_seconds=60)
        
#         # Add timeout to prevent hanging
#         import asyncio

#         try:
#             answer = await asyncio.wait_for(
#                 qa_chain.run(prompt, callbacks=[timeout_callback]),
#                 timeout=60  # seconds
#             )
#         except asyncio.TimeoutError:
#             raise TimeoutError("LLM chain processing timed out")
        
#         logger.debug(f"Raw answer from qa_chain: {answer} ({type(answer)})")

#         if not answer:
#             raise ValueError("Empty answer returned from qa_chain")

#         if not isinstance(answer, str):
#             answer = str(answer)  # Fallback to string for serialization

#         return {
#             "status": "success",
#             "response": answer,
#             "language": detect(query.question)
#         }
    
#     except TimeoutError as te:
#         logger.error("Request timed out", exc_info=True)
#         raise HTTPException(
#             status_code=status.HTTP_504_GATEWAY_TIMEOUT,
#             detail={
#                 "status": "error",
#                 "message": "Request timed out",
#                 "error": str(te)
#             }
#         )
#     except Exception as e:
#         logger.error(f"Error processing request: {str(e)}", exc_info=True)
#         raise HTTPException(
#             status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
#             detail={
#                 "status": "error",
#                 "message": "Failed to process question",
#                 "error": str(e)
#             }
#         )

# # Add TimeoutCallback
# class TimeoutCallback(BaseCallbackHandler):
#     def __init__(self, timeout_seconds: int = 60):  # Increased default timeout
#         super().__init__()
#         self.timeout_seconds = timeout_seconds
#         self.start_time = None
        
#     async def on_llm_start(self, *args, **kwargs):
#         self.start_time = asyncio.get_event_loop().time()
        
#     async def on_llm_new_token(self, *args, **kwargs):
#         if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
#             raise TimeoutError("LLM processing timeout")

# if __name__ == "__main__":
#     import signal
    
#     def handle_exit(signum, frame):
#         print("Shutting down gracefully...")
#         exit(0)
    
#     signal.signal(signal.SIGINT, handle_exit)
#     uvicorn.run(app, host="0.0.0.0", port=8000)


import torch
import asyncio
import logging
import signal
import uvicorn
import os 

from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
from langdetect import detect
from langchain.chains import RetrievalQA
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import LlamaCpp
from langchain.callbacks.base import BaseCallbackHandler
from qdrant_client import QdrantClient
from huggingface_hub import hf_hub_download
from contextlib import asynccontextmanager

# === CONFIGURATION === #
from llama_cpp import Llama

# REPO_ID = "FreedomIntelligence/Apollo-7B-GGUF"
# MODEL_NAME = "FreedomIntelligence/Apollo-7B"
# MODEL_FILE = "Apollo-7B.Q4_K_S.gguf"

REPO_ID = "RichardErkhov/FreedomIntelligence_-_Apollo-2B-gguf"
MODEL_NAME = "FreedomIntelligence/Apollo-2B"
MODEL_FILE = "Apollo-2B.IQ4_XS.gguf"
EMBEDDING_MODEL = "Omartificial-Intelligence-Space/GATE-AraBert-v1"
COLLECTION_NAME = "arabic_rag_collection"
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")


# === LOGGING === #
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# === INITIALIZATION === #
app = FastAPI()

class Query(BaseModel):
    question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)

class TimeoutCallback(BaseCallbackHandler):
    def __init__(self, timeout_seconds: int = 60):
        self.timeout_seconds = timeout_seconds
        self.start_time = None

    async def on_llm_start(self, *args, **kwargs):
        self.start_time = asyncio.get_event_loop().time()

    async def on_llm_new_token(self, *args, **kwargs):
        if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
            raise TimeoutError("LLM processing timeout")


# === LIFESPAN STARTUP/SHUTDOWN === #
@asynccontextmanager
async def lifespan(app: FastAPI):
    global qa_chain, qdrant_client

    try:
        logger.info("Initializing model and vector store...")

        # Load LLM model
        model_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=MODEL_FILE,
            local_dir="./models",
            local_dir_use_symlinks=False
        )
        llm = LlamaCpp(
            model_path=model_path,
            temperature=0.3,
            max_tokens=200,
            n_ctx=1024,
            top_p=0.9,
            top_k=40,
            n_threads=1,
            n_batch=1,
            low_vram=True,
            f16_kv=True,
            verbose=True
        )

        # Setup embeddings and Qdrant
        embedding = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
        qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
        qdrant_vectorstore = Qdrant(
            client=qdrant_client,
            collection_name=COLLECTION_NAME,
            embeddings=embedding,
        )

        retriever = qdrant_vectorstore.as_retriever(search_kwargs={"k": 3})

        # combine_docs_chain = RefineDocumentsChain.from_llm(llm=llm)
        # qa_chain = RetrievalQA(combine_documents_chain=combine_docs_chain, retriever=retriever)

        qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")

        logger.info("Model and vector store initialized successfully.")
        yield

    except Exception as e:
        logger.error(f"Initialization error: {e}")
        raise

    finally:
        if 'qdrant_client' in globals():
            await qdrant_client.close()
        logger.info("Shutdown complete.")

app = FastAPI(lifespan=lifespan)

# === PROMPT GENERATOR === #
def generate_prompt(question: str) -> str:
    lang = detect(question)
    if lang == "ar":
        return (
            "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
            "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
            "- وضوح وسلاسة كل نقطة\n"
            "- تجنب الحشو والعبارات الزائدة\n"
            f"\nالسؤال: {question}\nالإجابة:"
        )
    else:
        return (
            "Answer the following medical question in clear English with a detailed, non-redundant response. "
            "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
            "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
            "in concise and distinct bullet points:\n"
            f"Question: {question}\nAnswer:"
        )

# === ROUTES === #
@app.get("/")
async def root():
    return {"message": "Medical QA API is running!"}

@app.post("/ask")
async def ask(query: Query):
    try:
        logger.debug(f"Received question: {query.question}")
        prompt = generate_prompt(query.question)
        timeout_callback = TimeoutCallback(timeout_seconds=60)


        loop = asyncio.get_event_loop()
        
        answer = await asyncio.wait_for(
            # qa_chain.run(prompt, callbacks=[timeout_callback]),
            loop.run_in_executor(None, qa_chain.run, prompt),
            timeout=360
        )

        if not answer:
            raise ValueError("Empty answer returned from model")

        if 'Answer:' in answer:
            response_text = answer.split('Answer:')[-1].strip()
        elif 'الإجابة:' in answer:
            response_text = answer.split('الإجابة:')[-1].strip()
        else:
            response_text = answer.strip()

        
        return {
            "status": "success",
            "response": response_text,
            "language": detect(query.question)
        }

    except TimeoutError as te:
        logger.error("Request timed out", exc_info=True)
        raise HTTPException(
            status_code=status.HTTP_504_GATEWAY_TIMEOUT,
            detail={"status": "error", "message": "Request timed out", "error": str(te)}
        )

    except Exception as e:
        logger.error(f"Unexpected error: {e}", exc_info=True)
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail={"status": "error", "message": "Internal server error", "error": str(e)}
        )

# === ENTRYPOINT === #
if __name__ == "__main__":
    def handle_exit(signum, frame):
        print("Shutting down gracefully...")
        exit(0)

    signal.signal(signal.SIGINT, handle_exit)
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)