Spaces:
Sleeping
Sleeping
File size: 12,663 Bytes
c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 8981e66 c5ecd72 8981e66 c5ecd72 8981e66 c5ecd72 8981e66 c5ecd72 8981e66 c5ecd72 d940f83 c5ecd72 8981e66 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 51265e9 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 801fe7c d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 d940f83 c5ecd72 1412372 c5ecd72 4d6e31c 1412372 c5ecd72 d940f83 af539aa c5ecd72 d3d58e4 c5ecd72 d3d58e4 d940f83 c5ecd72 bc676ba c5ecd72 ae2daab c5ecd72 bde5081 c5ecd72 bde5081 c5ecd72 4e5f5cf c5ecd72 4e5f5cf c5ecd72 bc676ba c5ecd72 c395c47 af539aa c5ecd72 bc676ba af539aa c5ecd72 0c82f40 c5ecd72 0c82f40 c5ecd72 c0fe2cc c5ecd72 8981e66 c0fe2cc c5ecd72 dc80dbe c5ecd72 dc80dbe 07a8fb8 dc80dbe af539aa c395c47 7608a3e 4d6e31c af539aa 7608a3e 29f410d 3bbb164 af539aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# import torch
# import asyncio
# import logging
# import signal
# import uvicorn
# import os
# from fastapi import FastAPI, Request, HTTPException, status
# from pydantic import BaseModel, Field
# from langdetect import detect
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, GenerationConfig
# from langchain.vectorstores import Qdrant
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.chains import RetrievalQA
# from langchain.llms import HuggingFacePipeline
# from qdrant_client import QdrantClient
# from langchain.callbacks.base import BaseCallbackHandler
# from huggingface_hub import hf_hub_download
# from contextlib import asynccontextmanager
# # Get environment variables
# COLLECTION_NAME = "arabic_rag_collection"
# QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
# QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
# # === LOGGING === #
# logging.basicConfig(level=logging.DEBUG)
# logger = logging.getLogger(__name__)
# # Load model and tokenizer
# model_name = "FreedomIntelligence/Apollo-2B"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# tokenizer.pad_token = tokenizer.eos_token
# # FastAPI setup
# app = FastAPI(title="Apollo RAG Medical Chatbot")
# # Generation settings
# generation_config = GenerationConfig(
# max_new_tokens=150,
# temperature=0.2,
# top_k=20,
# do_sample=True,
# top_p=0.7,
# repetition_penalty=1.3,
# )
# # Text generation pipeline
# llm_pipeline = pipeline(
# model=model,
# tokenizer=tokenizer,
# task="text-generation",
# generation_config=generation_config,
# device=model.device.index if model.device.type == "cuda" else -1
# )
# llm = HuggingFacePipeline(pipeline=llm_pipeline)
# # Connect to Qdrant + embedding
# embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
# qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
# vector_store = Qdrant(
# client=qdrant_client,
# collection_name=COLLECTION_NAME,
# embeddings=embedding
# )
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# # Set up RAG QA chain
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=retriever,
# chain_type="stuff"
# )
# class Query(BaseModel):
# question: str = Field(..., example="ما هي اسباب تساقط الشعر ؟", min_length=3)
# class TimeoutCallback(BaseCallbackHandler):
# def __init__(self, timeout_seconds: int = 60):
# self.timeout_seconds = timeout_seconds
# self.start_time = None
# async def on_llm_start(self, *args, **kwargs):
# self.start_time = asyncio.get_event_loop().time()
# async def on_llm_new_token(self, *args, **kwargs):
# if asyncio.get_event_loop().time() - self.start_time > self.timeout_seconds:
# raise TimeoutError("LLM processing timeout")
# # def generate_prompt(question: str) -> str:
# # lang = detect(question)
# # if lang == "ar":
# # return (
# # "أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة. \n"
# # "- عدم تكرار أي نقطة أو عبارة أو كلمة\n"
# # "- وضوح وسلاسة كل نقطة\n"
# # "- تجنب الحشو والعبارات الزائدة\n"
# # f"\nالسؤال: {question}\nالإجابة:"
# # )
# # else:
# # return (
# # "Answer the following medical question in clear English with a detailed, non-redundant response. "
# # "Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant "
# # "information, rely on your prior medical knowledge. If the answer involves multiple points, list them "
# # "in concise and distinct bullet points:\n"
# # f"Question: {question}\nAnswer:"
# # )
# def generate_prompt(question):
# lang = detect(question)
# if lang == "ar":
# return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
# وتأكد من ان:
# - عدم تكرار أي نقطة أو عبارة أو كلمة
# - وضوح وسلاسة كل نقطة
# - تجنب الحشو والعبارات الزائدة-
# السؤال: {question}
# الإجابة:
# """
# else:
# return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas, phrases, or restate the question in the answer. If the context lacks relevant information, rely on your prior medical knowledge. If the answer involves multiple points, list them in concise and distinct bullet points:
# Question: {question}
# Answer:"""
# # === ROUTES === #
# @app.get("/")
# async def root():
# return {"message": "Medical QA API is running!"}
# @app.post("/ask")
# async def ask(query: Query):
# try:
# logger.debug(f"Received question: {query.question}")
# prompt = generate_prompt(query.question)
# timeout_callback = TimeoutCallback(timeout_seconds=360)
# loop = asyncio.get_event_loop()
# response = await asyncio.wait_for(
# # qa_chain.run(prompt, callbacks=[timeout_callback]),
# loop.run_in_executor(None, qa_chain.run, prompt),
# timeout=360
# )
# if not response:
# raise ValueError("Empty answer returned from model")
# answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
# return {
# "status": "success",
# "response": response,
# "answer": answer,
# "language": detect(query.question)
# }
# except TimeoutError as te:
# logger.error("Request timed out", exc_info=True)
# raise HTTPException(
# status_code=status.HTTP_504_GATEWAY_TIMEOUT,
# detail={"status": "error", "message": "Request timed out", "error": str(te)}
# )
# except Exception as e:
# logger.error(f"Unexpected error: {e}", exc_info=True)
# raise HTTPException(
# status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
# detail={"status": "error", "message": "Internal server error", "error": str(e)}
# )
# @app.post("/chat")
# def chat(query: Query):
# logger.debug(f"Received question: {query.question}")
# prompt = generate_prompt(query.question)
# response = qa_chain.run(prompt)
# answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
# return {
# "response": response,
# "answer": answer
# }
# # === ENTRYPOINT === #
# if __name__ == "__main__":
# def handle_exit(signum, frame):
# print("Shutting down gracefully...")
# exit(0)
# signal.signal(signal.SIGINT, handle_exit)
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000)
from langdetect import detect
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, GenerationConfig
import torch
import os
import logging
from fastapi import FastAPI, Request, HTTPException, status
from pydantic import BaseModel, Field
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor
from fastapi.middleware.cors import CORSMiddleware
from langchain.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from qdrant_client import QdrantClient
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
COLLECTION_NAME = "arabic_rag_collection"
QDRANT_URL = os.getenv("QDRANT_URL", "https://12efeef2-9f10-4402-9deb-f070977ddfc8.eu-central-1-0.aws.cloud.qdrant.io:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.Jb39rYQW2rSE9RdXrjdzKY6T1RF44XjdQzCvzFkjat4")
# Load model and tokenizer
# model_name = "FreedomIntelligence/Apollo-7B"
# model_name = "emilyalsentzer/Bio_ClinicalBERT"
model_name = "FreedomIntelligence/Apollo-2B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
app = FastAPI(title="Apollo RAG Medical Chatbot")
# Add this after creating the `app`
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allow all origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
generation_config = GenerationConfig(
max_new_tokens=200,
temperature=0.3,
top_k=50,
do_sample=True,
top_p=0.9,
)
# Create generation pipeline
pipe = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
generation_config = generation_config,
task = "text-generation",
device=model.device.index if torch.cuda.is_available() else -1
)
llm = HuggingFacePipeline(pipeline=pipe)
embedding = HuggingFaceEmbeddings(model_name="Omartificial-Intelligence-Space/GATE-AraBert-v1")
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
vector_store = Qdrant(
client=qdrant_client,
collection_name=COLLECTION_NAME,
embeddings=embedding
)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# ----------------- RAG Chain ------------------
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff"
)
# Prompt formatter based on language
def generate_prompt(message):
lang = detect(message)
if lang == "ar":
return f"""أجب على السؤال الطبي التالي بلغة عربية فصحى، بإجابة دقيقة ومفصلة. إذا لم تجد معلومات كافية في السياق، استخدم معرفتك الطبية السابقة.
وتأكد من ان:
- عدم تكرار أي نقطة أو عبارة أو كلمة
- وضوح وسلاسة كل نقطة
- تجنب الحشو والعبارات الزائدة
السؤال: {message}
الإجابة:"""
else:
return f"""Answer the following medical question in clear English with a detailed, non-redundant response. Do not repeat ideas or restate the question. If information is missing, rely on your prior medical knowledge:
Question: {message}
Answer:"""
executor = ThreadPoolExecutor()
# Define request model
class Query(BaseModel):
message: str
@app.get("/")
def read_root():
return {"message": "Apollo Medical Chatbot API is running"}
@app.post("/ask")
async def chat_fn(query: Query):
message = query.message
logger.info(f"Received message: {message}")
prompt = generate_prompt(message)
# Run blocking inference in thread
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(executor, lambda: pipe(prompt,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
top_p=0.9)[0]['generated_text'])
# Parse answer
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
return {
"response": response,
"Answer": answer
}
@app.post("/ask-rag")
async def chat_fn(query: Query):
message = query.message
prompt = generate_prompt(message)
logger.info(f"Received message: {message}")
# Run RAG inference in thread
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(executor, lambda: qa_chain.run(prompt))
answer = response.split("Answer:")[-1].strip() if "Answer:" in response else response.split("الإجابة:")[-1].strip()
return {
"response": response,
"answer": answer
} |