File size: 8,900 Bytes
36d6a64
2d63152
 
36d6a64
2d63152
 
 
36d6a64
2d63152
 
 
 
 
 
 
 
 
 
 
 
 
0b58b3e
 
 
 
 
 
 
 
 
839ea83
 
 
 
 
 
 
 
 
 
 
 
0b58b3e
 
 
 
361be6b
0b58b3e
 
 
 
 
 
 
36d6a64
 
 
 
 
 
7367161
 
36d6a64
 
 
7367161
 
36d6a64
08afbf6
8fc5ad4
08afbf6
36d6a64
8fc5ad4
 
 
 
 
839ea83
 
8fc5ad4
 
 
 
 
839ea83
 
 
 
 
36d6a64
 
839ea83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36d6a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361be6b
36d6a64
 
361be6b
98b8fe1
361be6b
 
 
 
36d6a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361be6b
36d6a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Import the necessary libraries
import subprocess
import sys

# Function to install a package using pip
def install(package):
    subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Install required packages
try:
    install("gradio")
    install("openai==1.23.2")
    install("tiktoken==0.6.0")
    install("pypdf==4.0.1")
    install("langchain==0.1.1")
    install("langchain-community==0.0.13")
    install("chromadb==0.4.22")
    install("sentence-transformers==2.3.1")
except subprocess.CalledProcessError as e:
    print(f"An error occurred: {e}")

import gradio as gr
import os
import uuid
import json
import pandas as pd
import subprocess
from openai import OpenAI
from huggingface_hub import HfApi
from huggingface_hub import CommitScheduler
from huggingface_hub import hf_hub_download
import zipfile
# Define your repository and file path
repo_id = "kgauvin603/rag-10k"
file_path = "dataset.zip"

# Download the file
downloaded_file = hf_hub_download(repo_id, file_path)

# Print the path to the downloaded file
print(f"Downloaded file is located at: {downloaded_file}")

from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings
)
from langchain_community.vectorstores import Chroma
#from google.colab import userdata, drive
from pathlib import Path
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import json
import tiktoken
import pandas as pd
import tiktoken

# Define the embedding model and the vectorstore
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')

# If dataset directory exixts, remove it and all of the contents within

#if os.path.exists('dataset'):
#  !rm -rf dataset

# If collection_db exists, remove it and all of the contents within

#if os.path.exists('collection_db'):
#    !rm -rf dataset

#Mount the Google Drive
#drive.mount('/content/drive')

#Upload Dataset-10k.zip and unzip it dataset folder using -d option
#!unzip Dataset-10k.zip -d dataset

import subprocess

# Command to unzip the file
#command = "unzip kgauvin603/rag-10k-analysis/Dataset-10k.zip -d dataset"
command = "pip install transformers huggingface_hub requests"
# Execute the command
try:
    subprocess.run(command, check=True, shell=True)
except subprocess.CalledProcessError as e:
    print(f"An error occurred: {e}")
    
from huggingface_hub import hf_hub_download
import zipfile
import os
import requests

# Provide pdf_folder_location

repo_id = "kgauvin603/rag-10k"
file_path = "dataset.zip"
# Get the URL for the file in the repository
file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_path}"

# Download the file into memory
response = requests.get(file_url)
response.raise_for_status()  # Ensure the request was successful
# Open the zip file in memory
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_ref:
    # List the files in the zip archive
    zip_file_list = zip_ref.namelist()
    print(f"Files in the zip archive: {zip_file_list}")

    # Extract specific files or work with them directly in memory
    # For example, reading a specific file
    with zip_ref.open('dataset/some_file.txt') as file:
        file_content = file.read()
        print(file_content.decode('utf-8'))

# Define the extraction path
#extraction_path = "./extracted_files"

# Create the directory if it doesn't exist
#os.makedirs(extraction_path, exist_ok=True)

# Extract the contents of the zip file
#with zipfile.ZipFile(downloaded_file, 'r') as zip_ref:
#    zip_ref.extractall(extraction_path)

# List the files in the extraction path
#extracted_files = os.listdir(extraction_path)
#print(f"Extracted files: {extracted_files}")

# Load the directory to pdf_loader
pdf_loader = PyPDFDirectoryLoader(pdf_folder_location)

# Create text_splitter using recursive splitter
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    encoding_name='cl100k_base',
    chunk_size=512,
    chunk_overlap=16
)

# Create chunks
report_chunks = pdf_loader.load_and_split(text_splitter)

#Create a Colelction Name
collection_name = 'collection'

# Create the vector Database
vectorstore = Chroma.from_documents(
    report_chunks,
    embedding_model,
    collection_name=collection_name,
    persist_directory='./collection_db'
)

# Persist the DB
vectorstore.persist()

vectorstore_persisted = Chroma(
    collection_name=collection_name,
    persist_directory='./collection_db',
    embedding_function=embedding_model
)

retriever = vectorstore_persisted.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 5}
)

#Mount the Google Drive
#drive.mount('/content/drive')

#Copy the persisted database to your drive
#command = "!cp -r collection_db /content/drive/MyDrive/"
# Execute the command
#try:
#    subprocess.run(command, check=True, shell=True)
#except subprocess.CalledProcessError as e:
#    print(f"An error occurred: {e}")

# Get anyscale api key
anyscale_api_key = userdata.get('dev-work')

# Initialise the client
client = OpenAI(
    base_url="https://api.endpoints.anyscale.com/v1",
    api_key=anyscale_api_key
)
#Provide the model name
model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B'

# Initialise the embedding model
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')

# Load the persisted DB
persisted_vectordb_location = './collection_db'

#Create a Colelction Name
collection_name = 'collection'

# Load the persisted DB
vectorstore_persisted = Chroma(
    collection_name=collection_name,
    persist_directory=persisted_vectordb_location,
    embedding_function=embedding_model
)

# Prepare the logging functionality

log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="kgauvin603/rag-10k-analysis",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2,
    token=hf_token
)

# Define the Q&A system message
qna_system_message = """You are an assistant to a financial services firm who answers user queries on annual reports.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.

User questions will begin with the token: ###Question.

Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.

If the answer is not found in the context, respond "I don't know".
"""

# Create a message template
qna_user_message_template = """
###Context
Here are some documents that are relevant to the question mentioned below.
{context}

###Question
{question}
"""

# Define the predict function that runs when 'Submit' is clicked or when an API request is made
def predict(user_input, company):

    filter = "dataset/" + company + "-10-k-2023.pdf"
    relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source": filter})

    # Create context_for_query
    context_list = [d.page_content for d in relevant_document_chunks]
    context_for_query = ". ".join(context_list)

    # Create messages
    prompt = [
        {'role': 'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(
            context=context_for_query,
            question=user_input
        )}
    ]

    try:
        response = client.chat.completions.create(
            model=model_name,
            messages=prompt,
            temperature=0
        )

        prediction = response.choices[0].message.content.strip()
    except Exception as e:
        prediction = f'Sorry, I encountered the following error: \n{e}'

    # Log both the inputs and outputs to a local log file
    # Ensure that the commit scheduler is locked to avoid parallel access
    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': user_input,
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.

textbox = gr.Textbox(label="User Input")
#company = gr.List(label="Select Company", choices=["IBM", "Meta", "aws", "google","msft"])
company = gr.Dropdown(label="Select Company", choices=["IBM", "Meta", "aws", "google","msft"])

# Create the interface
# For the inputs parameter of Interface provide [textbox, company]
demo = gr.Interface(fn=predict, inputs=[textbox, company], outputs="text")

demo.queue()
demo.launch(share=True)