File size: 3,587 Bytes
258d8c9
c74095e
975dc6e
c74095e
 
 
 
 
 
258d8c9
e8b12f5
 
880828c
c74095e
 
c4964ee
430340e
 
 
c4964ee
3eed896
 
 
 
 
24db23e
 
48c7266
258d8c9
c74095e
 
 
 
 
258d8c9
 
090c9fa
 
c74095e
 
 
 
 
090c9fa
c74095e
febb26d
090c9fa
8118b09
c74095e
 
febb26d
090c9fa
8118b09
c74095e
 
 
 
 
 
 
090c9fa
c74095e
65e93e6
c74095e
65e93e6
6f00ba2
258d8c9
c131c56
880828c
 
 
 
806402e
 
 
c33c1c5
880828c
466cd5e
 
8df7d86
a950a05
bf379ef
a950a05
466cd5e
430340e
 
65e93e6
 
 
a950a05
34e4365
bd9a3cd
65e93e6
b547a14
466cd5e
a600f9f
 
466cd5e
6303c40
280a8d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2

with open("test.html") as f:
    lines = f.readlines()

def create_key(seed=0):
    return jax.random.PRNGKey(seed)

def addp5sketch(url):
   iframe = f'<iframe src ={url} style="border:none;height:525px;width:100%"/frame>'
   return gr.HTML(iframe)

def wandb_report(url):
    iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>'
    return gr.HTML(iframe)

report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5'
sketch_url = 'https://editor.p5js.org/kfahn/full/Ntzq9HWhx'

control_img = 'myimage.jpg'

controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
    "JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)

def infer(prompts, negative_prompts, image):

    params["controlnet"] = controlnet_params
    
    num_samples = 1 #jax.device_count()
    rng = create_key(0)
    rng = jax.random.split(rng, jax.device_count())
    image = Image.fromarray(image)
    
    prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
    negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
    processed_image = pipe.prepare_image_inputs([image] * num_samples)
    
    p_params = replicate(params)
    prompt_ids = shard(prompt_ids)
    negative_prompt_ids = shard(negative_prompt_ids)
    processed_image = shard(processed_image)
    
    output = pipe(
        prompt_ids=prompt_ids,
        image=processed_image,
        params=p_params,
        prng_seed=rng,
        num_inference_steps=50,
        neg_prompt_ids=negative_prompt_ids,
        jit=True,
    ).images[0]
    
    #output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
    return output

with gr.Blocks(theme='kfahn/AnimalPose') as demo:  
  gr.Markdown(
      """
      # Animal Pose Control Net
      ## This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
      [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)  
      [Diffusers model](https://huggingface.co/JFoz/dog-pose)  
      [Github](https://github.com/fi4cr/animalpose)   
      [Training Report](https://wandb.ai/john-fozard/AP10K-pose/runs/wn89ezaw)
      """)
  with gr.Row():
    with gr.Column():
      prompts  = gr.Textbox(label="Prompt", placeholder="black cocker spaniel sitting on a lawn, best quality")
      negative_prompts  = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, missing ears, missing paws")
      conditioning_image = gr.Image(label="Conditioning Image")
      run_btn = gr.Button("Run")
    with gr.Column():
      keypoint_tool = addp5sketch(sketch_url)
      #keypoint_tool = gr.HTML(lines)
      output = gr.Image(
                label="Result",
            )
          
  run_btn.click(fn=infer, inputs = [prompts, negative_prompts, conditioning_image], outputs = output)
    
#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = output,
            #examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]])   
    
#with gr.Row():
 #   report = wandb_report(report_url)
    

demo.launch(debug=True)