File size: 11,518 Bytes
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from dataclasses import dataclass
from typing import Any, Optional

import lightning as L
import loralib as lora
import torch
import torch.nn.functional as F
from lightning.pytorch.utilities.types import OptimizerLRScheduler

import fish_speech.utils as utils
from fish_speech.models.text2semantic.llama import NaiveTransformer

log = utils.RankedLogger(__name__, rank_zero_only=True)


@dataclass
class LoraConfig:
    r: int
    lora_alpha: float
    lora_dropout: float = 0.0


class TextToSemantic(L.LightningModule):
    def __init__(
        self,
        model: NaiveTransformer,
        optimizer: Any,
        lr_scheduler: Any,
        lora_config: Optional[LoraConfig] = None,
        save_lora_only: bool = False,
        use_dpo: bool = False,
        dpo_beta: float = 0.2,
    ):
        super().__init__()

        self.model = model
        self.optimizer_builder = optimizer
        self.lr_scheduler_builder = lr_scheduler
        self.lora_config = lora_config
        self.save_lora_only = save_lora_only
        self.use_dpo = use_dpo  # We don't support reference model yet
        self.dpo_beta = dpo_beta

        if self.lora_config is not None:
            self.setup_lora()

    def setup_lora(self):
        # Replace the embedding layer with a LoRA layer
        self.model.embeddings = lora.Embedding(
            num_embeddings=self.model.embeddings.num_embeddings,
            embedding_dim=self.model.embeddings.embedding_dim,
            padding_idx=self.model.embeddings.padding_idx,
            r=self.lora_config.r,
            lora_alpha=self.lora_config.lora_alpha,
        )

        # Replace output layer with a LoRA layer
        linears = [(self.model, "output")]

        # Replace all linear layers with LoRA layers
        for layer in self.model.layers:
            linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")])
            linears.extend(
                [
                    (layer.feed_forward, "w1"),
                    (layer.feed_forward, "w2"),
                    (layer.feed_forward, "w3"),
                ]
            )

        if hasattr(self.model, "fast_layers"):
            # Dual-AR model
            linears.extend([(self.model, "fast_output")])

            for layer in self.model.fast_layers:
                linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")])
                linears.extend(
                    [
                        (layer.feed_forward, "w1"),
                        (layer.feed_forward, "w2"),
                        (layer.feed_forward, "w3"),
                    ]
                )

        for module, layer in linears:
            updated_linear = lora.Linear(
                in_features=getattr(module, layer).in_features,
                out_features=getattr(module, layer).out_features,
                bias=getattr(module, layer).bias,
                r=self.lora_config.r,
                lora_alpha=self.lora_config.lora_alpha,
                lora_dropout=self.lora_config.lora_dropout,
            )
            setattr(module, layer, updated_linear)

        # Mark only the LoRA layers as trainable
        lora.mark_only_lora_as_trainable(self.model, bias="lora_only")

    def forward(self, x):
        return self.model(x)

    def on_save_checkpoint(self, checkpoint):
        if self.lora_config is None or self.save_lora_only is False:
            return

        # Save only LoRA parameters
        state_dict = checkpoint["state_dict"]
        for name in list(state_dict.keys()):
            if "lora" not in name:
                state_dict.pop(name)

    def configure_optimizers(self) -> OptimizerLRScheduler:
        # Get weight decay parameters
        weight_decay_parameters, other_parameters = [], []
        for name, param in self.named_parameters():
            if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
                other_parameters.append(param)
            else:
                weight_decay_parameters.append(param)

        optimizer = self.optimizer_builder(
            [
                {"params": weight_decay_parameters},
                {"params": other_parameters, "weight_decay": 0.0},
            ]
        )

        # Print the parameters and their weight decay
        for i in optimizer.param_groups:
            log.info(
                f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
            )

        lr_scheduler = self.lr_scheduler_builder(optimizer)

        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": lr_scheduler,
                "interval": "step",
            },
        }

    # Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
    def get_batch_logps(
        self,
        logits: torch.FloatTensor,
        labels: torch.LongTensor,
        average_log_prob: bool = False,
    ) -> torch.FloatTensor:
        """Compute the log probabilities of the given labels under the given logits.

        Args:
            logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
            labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
            average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.

        Returns:
            A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
        """
        assert logits.shape[:-1] == labels.shape

        labels = labels.clone()
        loss_mask = labels != -100

        # dummy token; we'll ignore the losses on these tokens later
        labels[labels == -100] = 0

        per_token_logps = torch.gather(
            logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
        ).squeeze(-1)

        if average_log_prob:
            return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
        else:
            return (per_token_logps * loss_mask).sum(-1)

    def _step(self, batch, batch_idx, stage: str):
        is_train = stage == "train"

        # Do positive and negative samples in the same batch to speed up training
        labels = batch["labels"]
        outputs = self.model(
            inp=batch["inputs"],
            key_padding_mask=batch["attention_masks"],
        )
        token_logits = outputs.token_logits
        codebook_logits = outputs.codebook_logits

        if self.use_dpo:
            # Firtst half is positive, second half is negative
            token_logits, negative_token_logits = token_logits.chunk(2)
            codebook_logits, negative_codebook_logits = codebook_logits.chunk(2)
            labels, negative_labels = labels.chunk(2)

        # Generate labels
        base_loss = F.cross_entropy(
            token_logits.reshape(-1, token_logits.size(-1)),
            labels[:, 0].reshape(-1),
            ignore_index=-100,
        )

        codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
        semantic_loss = F.cross_entropy(
            codebook_logits.reshape(-1, codebook_logits.size(-1)),
            codebook_labels.reshape(-1),
            ignore_index=-100,
        )

        loss = base_loss + semantic_loss

        # If we use dpo
        if self.use_dpo:
            negative_codebook_labels = negative_labels[
                :, 1 : 1 + self.model.config.num_codebooks
            ].mT

            positive_codebook_logps = self.get_batch_logps(
                codebook_logits, codebook_labels
            )
            negative_codebook_logps = self.get_batch_logps(
                negative_codebook_logits, negative_codebook_labels
            )

            # TODO: implement the reference model, avoid screwing up the gradients
            dpo_loss = -F.logsigmoid(
                (positive_codebook_logps - negative_codebook_logps) * self.dpo_beta
            ).mean()

            chosen_rewards = self.dpo_beta * positive_codebook_logps.detach()
            rejected_rewards = self.dpo_beta * negative_codebook_logps.detach()
            reward_accuracy = (chosen_rewards > rejected_rewards).float().mean()
            chosen_rewards, rejected_rewards = (
                chosen_rewards.mean(),
                rejected_rewards.mean(),
            )

            loss = loss + dpo_loss

            self.log(
                f"{stage}/dpo_loss",
                dpo_loss,
                on_step=is_train,
                on_epoch=not is_train,
                prog_bar=False,
                logger=True,
            )

            self.log(
                f"{stage}/chosen_rewards",
                chosen_rewards,
                on_step=is_train,
                on_epoch=not is_train,
                prog_bar=False,
                logger=True,
            )

            self.log(
                f"{stage}/rejected_rewards",
                rejected_rewards,
                on_step=is_train,
                on_epoch=not is_train,
                prog_bar=False,
                logger=True,
            )

            self.log(
                f"{stage}/reward_accuracy",
                reward_accuracy,
                on_step=is_train,
                on_epoch=not is_train,
                prog_bar=False,
                logger=True,
            )

        self.log(
            f"{stage}/loss",
            loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=True,
            logger=True,
        )

        self.log(
            f"{stage}/base_loss",
            base_loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=False,
            logger=True,
        )

        self.log(
            f"{stage}/semantic_loss",
            semantic_loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=False,
            logger=True,
        )

        # Top-5 accuracy
        accuracy = self.get_accuracy(codebook_logits, codebook_labels)
        self.log(
            f"{stage}/top_5_accuracy",
            accuracy,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=True,
            logger=True,
        )

        if self.model.config.num_codebooks != self.model.config.num_in_codebooks:
            accuracy = self.get_accuracy(
                codebook_logits[:, :, : self.model.config.num_in_codebooks],
                codebook_labels[:, :, : self.model.config.num_in_codebooks],
            )

            self.log(
                f"{stage}/top_5_accuracy_in",
                accuracy,
                on_step=is_train,
                on_epoch=not is_train,
                prog_bar=True,
                logger=True,
            )

        return loss

    def get_accuracy(self, logits, labels):
        _, indices = logits.topk(5, dim=-1)
        correct = indices.eq(labels.unsqueeze(-1))
        correct[labels == -100] = 0
        correct = correct.sum()
        accuracy = correct / (labels != -100).sum()

        return accuracy

    def training_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")