File size: 26,248 Bytes
6d7e145
 
 
78dcdde
ceb86b8
650decf
 
fe25d31
cea7ad9
6d7e145
4f9cd10
 
 
 
 
 
6d7e145
 
 
 
d91523b
6d7e145
 
 
 
 
 
 
cbca521
 
 
6d7e145
 
 
 
 
 
 
 
 
 
 
650decf
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9cd10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91523b
 
 
 
 
 
 
 
 
 
6d7e145
78dcdde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650decf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bd78e
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7dbbf3
 
 
 
 
6d7e145
650decf
c359737
 
352e6a7
650decf
 
 
 
c359737
650decf
 
c7dbbf3
 
650decf
 
c359737
650decf
4f9cd10
6d7e145
 
c7dbbf3
d0f4435
d91523b
 
6a88c30
6d7e145
c7dbbf3
bdb58ec
 
 
6d7e145
 
 
 
 
 
 
 
 
bdb58ec
6d7e145
 
 
bdb58ec
4f9cd10
 
 
 
 
 
 
 
 
 
 
 
 
6d7e145
 
 
 
 
 
 
 
 
1387bb0
 
6d7e145
 
 
c7dbbf3
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25bfdc
 
6d7e145
 
 
 
 
cef623e
6d7e145
 
 
 
55bcdca
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91523b
 
6d7e145
 
 
 
 
 
 
4f9cd10
 
352e6a7
4f9cd10
 
 
 
 
 
6d7e145
 
 
 
 
ceb86b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
from typing import Union

from argparse import ArgumentParser
from pathlib import Path
import subprocess
import librosa
import os
import time
import random

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import *
from moviepy.video.io.VideoFileClip import VideoFileClip

import asyncio
import json
import hashlib
from os import path, getenv
from pydub import AudioSegment

import gradio as gr

import torch

import edge_tts

from datetime import datetime
from scipy.io.wavfile import write

import config
import util
from infer_pack.models import (
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono
)
from vc_infer_pipeline import VC
    
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21  # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'

high_quality = True

# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
    '--hubert',
    default=getenv('RVC_HUBERT', 'hubert_base.pt'),
    help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
    '--config',
    default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
    help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
    '--api',
    action='store_true',
    help='enable api endpoint'
)
arg_parser.add_argument(
    '--cache-examples',
    action='store_true',
    help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified'  # noqa
)
args = arg_parser.parse_args()

app_css = '''
#model_info img {
    max-width: 100px;
    max-height: 100px;
    float: right;
}

#model_info p {
    margin: unset;
}
'''

app = gr.Blocks(
    theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"),
    css=app_css,
    analytics_enabled=False
)

# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()

# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []

for model_name in multi_cfg.get('models'):
    print(f'Loading model: {model_name}')

    # Load model info
    model_info = json.load(
        open(path.join('model', model_name, 'config.json'), 'r')
    )

    # Load RVC checkpoint
    cpt = torch.load(
        path.join('model', model_name, model_info['model']),
        map_location='cpu'
    )
    tgt_sr = cpt['config'][-1]
    cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0]  # n_spk

    if_f0 = cpt.get('f0', 1)
    net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
    if if_f0 == 1:
        net_g = SynthesizerTrnMs768NSFsid(
            *cpt['config'],
            is_half=util.is_half(config.device)
        )
    else:
        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])

    del net_g.enc_q

    # According to original code, this thing seems necessary.
    print(net_g.load_state_dict(cpt['weight'], strict=False))

    net_g.eval().to(config.device)
    net_g = net_g.half() if util.is_half(config.device) else net_g.float()

    vc = VC(tgt_sr, config)
    
    loaded_models.append(dict(
        name=model_name,
        metadata=model_info,
        vc=vc,
        net_g=net_g,
        if_f0=if_f0,
        target_sr=tgt_sr
    ))
        
print(f'Models loaded: {len(loaded_models)}')

# Edge TTS speakers
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())  # noqa

# Make MV
def make_bars_image(height_values, index, new_height):
    
    # Define the size of the image
    width = 512  
    height = new_height
    
    # Create a new image with a transparent background
    image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0))
    
    # Get the image drawing context
    draw = ImageDraw.Draw(image)
    
    # Define the rectangle width and spacing
    rect_width = 2
    spacing = 2
    
    # Define the list of height values for the rectangles
    #height_values = [20, 40, 60, 80, 100, 80, 60, 40]
    num_bars = len(height_values)
    # Calculate the total width of the rectangles and the spacing
    total_width = num_bars * rect_width + (num_bars - 1) * spacing
    
    # Calculate the starting position for the first rectangle
    start_x = int((width - total_width) / 2)
    # Define the buffer size
    buffer_size = 80
    # Draw the rectangles from left to right
    x = start_x
    for i, height in enumerate(height_values):
        
        # Define the rectangle coordinates
        y0 = buffer_size
        y1 = height + buffer_size
        x0 = x
        x1 = x + rect_width

        # Draw the rectangle
        draw.rectangle([x0, y0, x1, y1], fill='white')  
        
        # Move to the next rectangle position
        if i < num_bars - 1:
            x += rect_width + spacing
        

    # Rotate the image by 180 degrees
    image = image.rotate(180)
    
    # Mirror the image
    image = image.transpose(Image.FLIP_LEFT_RIGHT)
    
    # Save the image
    image.save('audio_bars_'+ str(index) + '.png')

    return 'audio_bars_'+ str(index) + '.png'

def db_to_height(db_value):
    # Scale the dB value to a range between 0 and 1
    scaled_value = (db_value + 80) / 80
    
    # Convert the scaled value to a height between 0 and 100
    height = scaled_value * 50
    
    return height

def infer(title, audio_in, image_in):
    # Load the audio file
    audio_path = audio_in
    audio_data, sr = librosa.load(audio_path)

    # Get the duration in seconds
    duration = librosa.get_duration(y=audio_data, sr=sr)
    
    # Extract the audio data for the desired time
    start_time = 0 # start time in seconds
    end_time = duration # end time in seconds
    
    start_index = int(start_time * sr)
    end_index = int(end_time * sr)
    
    audio_data = audio_data[start_index:end_index]
    
    # Compute the short-time Fourier transform
    hop_length = 512

    
    stft = librosa.stft(audio_data, hop_length=hop_length)
    spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max)

    # Get the frequency values
    freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0])

    # Select the indices of the frequency values that correspond to the desired frequencies
    n_freqs = 114
    freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int)
    
    # Extract the dB values for the desired frequencies
    db_values = []
    for i in range(spectrogram.shape[1]):
        db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i])))
    
    # Print the dB values for the first time frame
    print(db_values[0])

    proportional_values = []

    for frame in db_values:
        proportional_frame = [db_to_height(db) for f, db in frame]
        proportional_values.append(proportional_frame)

    print(proportional_values[0])
    print("AUDIO CHUNK: " + str(len(proportional_values)))

    # Open the background image
    background_image = Image.open(image_in)
    
    # Resize the image while keeping its aspect ratio
    bg_width, bg_height = background_image.size
    aspect_ratio = bg_width / bg_height
    new_width = 512
    new_height = int(new_width / aspect_ratio)
    resized_bg = background_image.resize((new_width, new_height))

    # Apply black cache for better visibility of the white text
    bg_cache = Image.open('black_cache.png')
    resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache)

    # Create a new ImageDraw object
    draw = ImageDraw.Draw(resized_bg)
    
    # Define the text to be added
    text = title
    font = ImageFont.truetype("Lato-Regular.ttf", 16)
    text_color = (255, 255, 255) # white color
    
    # Calculate the position of the text
    text_width, text_height = draw.textsize(text, font=font)
    x = 30
    y = new_height - 70
    
    # Draw the text on the image
    draw.text((x, y), text, fill=text_color, font=font)

    # Save the resized image
    resized_bg.save('resized_background.jpg')
    
    generated_frames = []
    for i, frame in enumerate(proportional_values): 
        bars_img = make_bars_image(frame, i, new_height)
        bars_img = Image.open(bars_img)
        # Paste the audio bars image on top of the background image
        fresh_bg = Image.open('resized_background.jpg')
        fresh_bg.paste(bars_img, (0, 0), mask=bars_img)
        # Save the image
        fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg')
        generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg')
    print(generated_frames)

    # Create a video clip from the images
    clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time))
    audio_clip = AudioFileClip(audio_in)
    clip = clip.set_audio(audio_clip)
    # Set the output codec
    codec = 'libx264'
    audio_codec = 'aac'
    # Save the video to a file
    clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec)

    retimed_clip = VideoFileClip("my_video.mp4")

    # Set the desired frame rate
    new_fps = 25
    
    # Create a new clip with the new frame rate
    new_clip = retimed_clip.set_fps(new_fps)
    
    # Save the new clip as a new video file
    new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec)

    return "my_video_retimed.mp4"

# mix vocal and non-vocal
def mix(audio1, audio2):
  sound1 = AudioSegment.from_file(audio1)
  sound2 = AudioSegment.from_file(audio2)
  length = len(sound1)
  mixed = sound1[:length].overlay(sound2)

  mixed.export("song.wav", format="wav")

  return "song.wav"

# Bilibili
def youtube_downloader(
    video_identifier,
    start_time,
    end_time,
    output_filename="track.wav",
    num_attempts=5,
    url_base="",
    quiet=False,
    force=True,
):
    output_path = Path(output_filename)
    if output_path.exists():
        if not force:
            return output_path
        else:
            output_path.unlink()

    quiet = "--quiet --no-warnings" if quiet else ""
    command = f"""
        yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"  # noqa: E501
    """.strip()

    attempts = 0
    while True:
        try:
            _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError:
            attempts += 1
            if attempts == num_attempts:
                return None
        else:
            break

    if output_path.exists():
        return output_path
    else:
        return None

def audio_separated(audio_input, progress=gr.Progress()):
    # start progress
    progress(progress=0, desc="Starting...")
    time.sleep(0.1)

    # check file input
    if audio_input is None:
        # show progress
        for i in progress.tqdm(range(100), desc="Please wait..."):
            time.sleep(0.01)
            
        return (None, None, 'Please input audio.')

    # create filename
    filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
    
    # progress
    progress(progress=0.10, desc="Please wait...")
    
    # make dir output
    os.makedirs("output", exist_ok=True)
    
    # progress
    progress(progress=0.20, desc="Please wait...")
    
    # write
    if high_quality:
        write(filename+".wav", audio_input[0], audio_input[1])
    else:
        write(filename+".mp3", audio_input[0], audio_input[1])
        
    # progress
    progress(progress=0.50, desc="Please wait...")

    # demucs process
    if high_quality:
        command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
    else:
        command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
    
    os.system(command_demucs)
    
    # progress
    progress(progress=0.70, desc="Please wait...")
    
    # remove file audio
    if high_quality:
        command_delete = "rm -v ./"+filename+".wav"
    else:
        command_delete = "rm -v ./"+filename+".mp3"
    
    os.system(command_delete)
    
    # progress
    progress(progress=0.80, desc="Please wait...")
    
    # progress
    for i in progress.tqdm(range(80,100), desc="Please wait..."):
        time.sleep(0.1)

    if high_quality:
        return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
    else:
        return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."

        
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118  # noqa
def vc_func(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    if input_audio is None:
        return (None, 'Please provide input audio.')

    if model_index is None:
        return (None, 'Please select a model.')

    model = loaded_models[model_index]

    # Reference: so-vits
    (audio_samp, audio_npy) = input_audio

    # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
    # Can be change well, we will see
    if (audio_npy.shape[0] / audio_samp) > 600 and in_hf_space:
        return (None, 'Input audio is longer than 600 secs.')

    # Bloody hell: https://stackoverflow.com/questions/26921836/
    if audio_npy.dtype != np.float32:  # :thonk:
        audio_npy = (
            audio_npy / np.iinfo(audio_npy.dtype).max
        ).astype(np.float32)

    if len(audio_npy.shape) > 1:
        audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))

    if audio_samp != 16000:
        audio_npy = librosa.resample(
            audio_npy,
            orig_sr=audio_samp,
            target_sr=16000
        )

    pitch_int = int(pitch_adjust)

    resample = (
        0 if resample_option == 'Disable resampling'
        else int(resample_option)
    )

    times = [0, 0, 0]

    checksum = hashlib.sha512()
    checksum.update(audio_npy.tobytes())

    output_audio = model['vc'].pipeline(
        hubert_model,
        model['net_g'],
        model['metadata'].get('speaker_id', 0),
        audio_npy,
        checksum.hexdigest(),
        times,
        pitch_int,
        f0_method,
        path.join('model', model['name'], model['metadata']['feat_index']),
        feat_ratio,
        model['if_f0'],
        filter_radius,
        model['target_sr'],
        resample,
        rms_mix_rate,
        'v2'
    )

    out_sr = (
        resample if resample >= 16000 and model['target_sr'] != resample
        else model['target_sr']
    )

    print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
    return ((out_sr, output_audio), 'Success')


async def edge_tts_vc_func(
    input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    if input_text is None:
        return (None, 'Please provide TTS text.')

    if tts_speaker is None:
        return (None, 'Please select TTS speaker.')

    if model_index is None:
        return (None, 'Please select a model.')

    speaker = tts_speakers_list[tts_speaker]['ShortName']
    (tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
    return vc_func(
        (tts_sr, tts_np),
        model_index,
        pitch_adjust,
        f0_method,
        feat_ratio,
        filter_radius,
        rms_mix_rate,
        resample_option
    )


def update_model_info(model_index):
    if model_index is None:
        return str(
            '### Model info\n'
            'Please select a model from dropdown above.'
        )

    model = loaded_models[model_index]
    model_icon = model['metadata'].get('icon', '')

    return str(
        '### Model info\n'
        '![model icon]({icon})'
        '**{name}**\n\n'
        'Author: {author}\n\n'
        'Source: {source}\n\n'
        '{note}'
    ).format(
        name=model['metadata'].get('name'),
        author=model['metadata'].get('author', 'Anonymous'),
        source=model['metadata'].get('source', 'Unknown'),
        note=model['metadata'].get('note', ''),
        icon=(
            model_icon
            if model_icon.startswith(('http://', 'https://'))
            else '/file/model/%s/%s' % (model['name'], model_icon)
        )
    )


def _example_vc(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    (audio, message) = vc_func(
        input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
        filter_radius, rms_mix_rate, resample_option
    )
    return (
        audio,
        message,
        update_model_info(model_index)
    )


async def _example_edge_tts(
    input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    (audio, message) = await edge_tts_vc_func(
        input_text, model_index, tts_speaker, pitch_adjust, f0_method,
        feat_ratio, filter_radius, rms_mix_rate, resample_option
    )
    return (
        audio,
        message,
        update_model_info(model_index)
    )


with app:
    gr.HTML("<center>"
            "<h1>🥳🎶🎡 - AI歌手,RVC歌声转换 + AI变声</h1>"
            "</center>")
    gr.Markdown("### <center>🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>")
    gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")

    with gr.Tab("🤗 - B站视频提取声音"):
        with gr.Row():
            with gr.Column():
                ydl_url_input  = gr.Textbox(label="B站视频网址(可直接填写相应的BV号)", value = "https://www.bilibili.com/video/BV...")
                start = gr.Number(value=0, label="起始时间 (秒)")
                end = gr.Number(value=15, label="结束时间 (秒)")
                ydl_url_submit = gr.Button("提取声音文件吧", variant="primary")
                as_audio_submit = gr.Button("去除背景音吧", variant="primary")
            with gr.Column():
                ydl_audio_output = gr.Audio(label="Audio from Bilibili")
                as_audio_input  = ydl_audio_output
                as_audio_vocals    = gr.Audio(label="歌曲人声部分")
                as_audio_no_vocals = gr.Audio(label="Music only", type="filepath", visible=False)
                as_audio_message   = gr.Textbox(label="Message", visible=False)
                
    ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output])
    as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)
                    
    with gr.Row():
        with gr.Column():
            with gr.Tab('🎶 - 歌声转换'):
                input_audio = as_audio_vocals
                vc_convert_btn = gr.Button('进行歌声转换吧!', variant='primary')
                full_song = gr.Button("加入歌曲伴奏吧!", variant="primary")
                new_song = gr.Audio(label="AI歌手+伴奏", type="filepath")

            with gr.Tab('🎙️ - 文本转语音'):
                tts_input = gr.Textbox(
                    label='请填写您想要转换的文本(中英皆可)',
                    lines=3
                )
                tts_speaker = gr.Dropdown(
                    [
                        '%s (%s)' % (
                            s['FriendlyName'],
                            s['Gender']
                        )
                        for s in tts_speakers_list
                    ],
                    label='请选择一个相应语言的说话人',
                    type='index'
                )

                tts_convert_btn = gr.Button('进行AI变声吧', variant='primary')
                
            with gr.Tab("📺 - 音乐视频"):
                with gr.Row():
                    with gr.Column():
                        inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填;英文)")
                        inp2 = new_song
                        inp3 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧")
                        btn = gr.Button("生成您的专属音乐视频吧", variant="primary")
              
                    with gr.Column():
                        out1 = gr.Video(label='您的专属音乐视频')
            btn.click(fn=infer, inputs=[inp1, inp2, inp3], outputs=[out1])
            
            pitch_adjust = gr.Slider(
                label='Pitch',
                minimum=-24,
                maximum=24,
                step=1,
                value=0
            )
            f0_method = gr.Radio(
                label='f0 methods',
                choices=['pm', 'rmvpe'],
                value='rmvpe',
                interactive=True
            )

            with gr.Accordion('更多设置', open=False):
                feat_ratio = gr.Slider(
                    label='Feature ratio',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.6
                )
                filter_radius = gr.Slider(
                    label='Filter radius',
                    minimum=0,
                    maximum=7,
                    step=1,
                    value=3
                )
                rms_mix_rate = gr.Slider(
                    label='Volume envelope mix rate',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1
                )
                resample_rate = gr.Dropdown(
                    [
                        'Disable resampling',
                        '16000',
                        '22050',
                        '44100',
                        '48000'
                    ],
                    label='Resample rate',
                    value='Disable resampling'
                )

        with gr.Column():
            # Model select
            model_index = gr.Dropdown(
                [
                    '%s - %s' % (
                        m['metadata'].get('source', 'Unknown'),
                        m['metadata'].get('name')
                    )
                    for m in loaded_models
                ],
                label='请选择您的AI歌手(必选)',
                type='index'
            )

            # Model info
            with gr.Box():
                model_info = gr.Markdown(
                    '### AI歌手信息\n'
                    'Please select a model from dropdown above.',
                    elem_id='model_info'
                )

            output_audio = gr.Audio(label='AI歌手(无伴奏)', type="filepath")
            output_msg = gr.Textbox(label='Output message')

    multi_examples = multi_cfg.get('examples')
    if (
        multi_examples and
        multi_examples.get('vc') and multi_examples.get('tts_vc')
    ):
        with gr.Accordion('Sweet sweet examples', open=False):
            with gr.Row():
                # VC Example
                if multi_examples.get('vc'):
                    gr.Examples(
                        label='Audio conversion examples',
                        examples=multi_examples.get('vc'),
                        inputs=[
                            input_audio, model_index, pitch_adjust, f0_method,
                            feat_ratio
                        ],
                        outputs=[output_audio, output_msg, model_info],
                        fn=_example_vc,
                        cache_examples=args.cache_examples,
                        run_on_click=args.cache_examples
                    )

                # Edge TTS Example
                if multi_examples.get('tts_vc'):
                    gr.Examples(
                        label='TTS conversion examples',
                        examples=multi_examples.get('tts_vc'),
                        inputs=[
                            tts_input, model_index, tts_speaker, pitch_adjust,
                            f0_method, feat_ratio
                        ],
                        outputs=[output_audio, output_msg, model_info],
                        fn=_example_edge_tts,
                        cache_examples=args.cache_examples,
                        run_on_click=args.cache_examples
                    )

    vc_convert_btn.click(
        vc_func,
        [
            input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
            filter_radius, rms_mix_rate, resample_rate
        ],
        [output_audio, output_msg],
        api_name='audio_conversion'
    )

    tts_convert_btn.click(
        edge_tts_vc_func,
        [
            tts_input, model_index, tts_speaker, pitch_adjust, f0_method,
            feat_ratio, filter_radius, rms_mix_rate, resample_rate
        ],
        [output_audio, output_msg],
        api_name='tts_conversion'
    )

    full_song.click(fn=mix, inputs=[output_audio, as_audio_no_vocals], outputs=[new_song])

    model_index.change(
        update_model_info,
        inputs=[model_index],
        outputs=[model_info],
        show_progress=False,
        queue=False
    )
    
    gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
    gr.Markdown("### <center>🧸 - 如何使用此程序:填写视频网址和视频起止时间后,依次点击“提取声音文件吧”、“去除背景音吧”、“进行歌声转换吧!”、“加入歌曲伴奏吧!”四个按键即可。</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')

app.queue(
    concurrency_count=1,
    max_size=20,
    api_open=args.api
).launch(show_error=True)