File size: 5,213 Bytes
4ebcd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9cb27
4ebcd7e
 
 
 
cd9cb27
4ebcd7e
 
 
 
 
 
 
 
 
 
 
 
cd9cb27
4ebcd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import torch
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter

ckpt_base_en = 'checkpoints/checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/checkpoints/converter'
device = 'cuda:0'

base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')

tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')

from tts_voice import tts_order_voice
import edge_tts
import gradio as gr
import tempfile
import anyio

def vc_en(text, audio_ref, style_mode):
  if style_mode=="default":
    source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
    reference_speaker = audio_ref
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
    save_path = "output.wav"

    # Run the base speaker tts
    src_path = "tmp.wav"
    base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)

    # Run the tone color converter
    encode_message = "@MyShell"
    tone_color_converter.convert(
        audio_src_path=src_path,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)

  else:
    source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
    reference_speaker = audio_ref
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)

    save_path = "output.wav"

    # Run the base speaker tts
    src_path = "tmp.wav"
    base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)

    # Run the tone color converter
    encode_message = "@MyShell"
    tone_color_converter.convert(
        audio_src_path=src_path,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)

  return "output.wav"

language_dict = tts_order_voice

base_speaker = "base_audio.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)

async def text_to_speech_edge(text, audio_ref, language_code):
    voice = language_dict[language_code]
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name

    await communicate.save(tmp_path)

    reference_speaker = audio_ref
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
    save_path = "output.wav"

    # Run the tone color converter
    encode_message = "@MyShell"
    tone_color_converter.convert(
        audio_src_path=tmp_path,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)

    return "output.wav"

app = gr.Blocks()

with app:
  gr.Markdown("# <center>🥳💕🎶 OpenVoice 3秒语音情感真实复刻</center>")
  gr.Markdown("## <center>🌟 只需3秒语音,一键复刻说话语气及情感,喜怒哀乐、应有尽有! </center>")
  gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
  with gr.Tab("💕语音情感合成"):
    with gr.Row():
      with gr.Column():
        inp1 = gr.Textbox(lines=3, label="请输入您想转换的英文文本")
        inp2 = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")
        inp3 = gr.Dropdown(label="请选择一种语音情感", info="🙂default😊friendly🤫whispering😄cheerful😱terrified😡angry😢sad", choices=["default", "friendly", "whispering", "cheerful", "terrified", "angry", "sad"], value="default")

        btn1 = gr.Button("开始语音情感真实复刻吧!", variant="primary")

      with gr.Column():
        out1 = gr.Audio(label="为您合成的专属语音", type="filepath")
    btn1.click(vc_en, [inp1, inp2, inp3], out1)

  with gr.Tab("🌟多语言声音复刻"):
    with gr.Row():
      with gr.Column():
        inp4 = gr.Textbox(lines=3, label="请输入您想转换的英文文本")
        inp5 = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")
        inp6 = gr.Dropdown(choices=list(language_dict.keys()), value=list(language_dict.keys())[15], label="请选择文本对应的语言")

        btn2 = gr.Button("开始语音情感真实复刻吧!", variant="primary")

      with gr.Column():
        out2 = gr.Audio(label="为您合成的专属语音", type="filepath")
    btn2.click(text_to_speech_edge, [inp4, inp5, inp6], out2)

    gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。Get your OpenAI API Key [here](https://platform.openai.com/api-keys).</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')

app.launch(show_error=True)