Spaces:
Running
Running
File size: 2,871 Bytes
26925fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import glob
import json
import os
import re
import librosa
import torch
import utils
from modules.hifigan.hifigan import HifiGanGenerator
from utils.hparams import hparams, set_hparams
from vocoders.base_vocoder import register_vocoder
from vocoders.pwg import PWG
from vocoders.vocoder_utils import denoise
def load_model(config_path, checkpoint_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ckpt_dict = torch.load(checkpoint_path, map_location="cpu")
if '.yaml' in config_path:
config = set_hparams(config_path, global_hparams=False)
state = ckpt_dict["state_dict"]["model_gen"]
elif '.json' in config_path:
config = json.load(open(config_path, 'r'))
state = ckpt_dict["generator"]
model = HifiGanGenerator(config)
model.load_state_dict(state, strict=True)
model.remove_weight_norm()
model = model.eval().to(device)
print(f"| Loaded model parameters from {checkpoint_path}.")
print(f"| HifiGAN device: {device}.")
return model, config, device
total_time = 0
@register_vocoder
class HifiGAN(PWG):
def __init__(self):
base_dir = hparams['vocoder_ckpt']
config_path = f'{base_dir}/config.yaml'
if os.path.exists(config_path):
ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key=
lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1]
print('| load HifiGAN: ', ckpt)
self.model, self.config, self.device = load_model(config_path=config_path, checkpoint_path=ckpt)
else:
config_path = f'{base_dir}/config.json'
ckpt = f'{base_dir}/generator_v1'
if os.path.exists(config_path):
self.model, self.config, self.device = load_model(config_path=config_path, checkpoint_path=ckpt)
def spec2wav(self, mel, **kwargs):
device = self.device
with torch.no_grad():
c = torch.FloatTensor(mel).unsqueeze(0).transpose(2, 1).to(device)
with utils.Timer('hifigan', print_time=hparams['profile_infer']):
f0 = kwargs.get('f0')
if f0 is not None and hparams.get('use_nsf'):
f0 = torch.FloatTensor(f0[None, :]).to(device)
y = self.model(c, f0).view(-1)
else:
y = self.model(c).view(-1)
wav_out = y.cpu().numpy()
if hparams.get('vocoder_denoise_c', 0.0) > 0:
wav_out = denoise(wav_out, v=hparams['vocoder_denoise_c'])
return wav_out
# @staticmethod
# def wav2spec(wav_fn, **kwargs):
# wav, _ = librosa.core.load(wav_fn, sr=hparams['audio_sample_rate'])
# wav_torch = torch.FloatTensor(wav)[None, :]
# mel = mel_spectrogram(wav_torch, hparams).numpy()[0]
# return wav, mel.T
|