File size: 17,172 Bytes
26925fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import random
from copy import deepcopy
import pandas as pd
import logging
from tqdm import tqdm
import json
import glob
import re
from resemblyzer import VoiceEncoder
import traceback
import numpy as np
import pretty_midi
import librosa
from scipy.interpolate import interp1d
import torch
from textgrid import TextGrid

from utils.hparams import hparams
from data_gen.tts.data_gen_utils import build_phone_encoder, get_pitch
from utils.pitch_utils import f0_to_coarse
from data_gen.tts.base_binarizer import BaseBinarizer, BinarizationError
from data_gen.tts.binarizer_zh import ZhBinarizer
from data_gen.tts.txt_processors.zh_g2pM import ALL_YUNMU
from vocoders.base_vocoder import VOCODERS


class SingingBinarizer(BaseBinarizer):
    def __init__(self, processed_data_dir=None):
        if processed_data_dir is None:
            processed_data_dir = hparams['processed_data_dir']
        self.processed_data_dirs = processed_data_dir.split(",")
        self.binarization_args = hparams['binarization_args']
        self.pre_align_args = hparams['pre_align_args']
        self.item2txt = {}
        self.item2ph = {}
        self.item2wavfn = {}
        self.item2f0fn = {}
        self.item2tgfn = {}
        self.item2spk = {}

    def split_train_test_set(self, item_names):
        item_names = deepcopy(item_names)
        test_item_names = [x for x in item_names if any([ts in x for ts in hparams['test_prefixes']])]
        train_item_names = [x for x in item_names if x not in set(test_item_names)]
        logging.info("train {}".format(len(train_item_names)))
        logging.info("test {}".format(len(test_item_names)))
        return train_item_names, test_item_names

    def load_meta_data(self):
        for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
            wav_suffix = '_wf0.wav'
            txt_suffix = '.txt'
            ph_suffix = '_ph.txt'
            tg_suffix = '.TextGrid'
            all_wav_pieces = glob.glob(f'{processed_data_dir}/*/*{wav_suffix}')

            for piece_path in all_wav_pieces:
                item_name = raw_item_name = piece_path[len(processed_data_dir)+1:].replace('/', '-')[:-len(wav_suffix)]
                if len(self.processed_data_dirs) > 1:
                    item_name = f'ds{ds_id}_{item_name}'
                self.item2txt[item_name] = open(f'{piece_path.replace(wav_suffix, txt_suffix)}').readline()
                self.item2ph[item_name] = open(f'{piece_path.replace(wav_suffix, ph_suffix)}').readline()
                self.item2wavfn[item_name] = piece_path

                self.item2spk[item_name] = re.split('-|#', piece_path.split('/')[-2])[0]
                if len(self.processed_data_dirs) > 1:
                    self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
                self.item2tgfn[item_name] = piece_path.replace(wav_suffix, tg_suffix)
        print('spkers: ', set(self.item2spk.values()))
        self.item_names = sorted(list(self.item2txt.keys()))
        if self.binarization_args['shuffle']:
            random.seed(1234)
            random.shuffle(self.item_names)
        self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)

    @property
    def train_item_names(self):
        return self._train_item_names

    @property
    def valid_item_names(self):
        return self._test_item_names

    @property
    def test_item_names(self):
        return self._test_item_names

    def process(self):
        self.load_meta_data()
        os.makedirs(hparams['binary_data_dir'], exist_ok=True)
        self.spk_map = self.build_spk_map()
        print("| spk_map: ", self.spk_map)
        spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
        json.dump(self.spk_map, open(spk_map_fn, 'w'))

        self.phone_encoder = self._phone_encoder()
        self.process_data('valid')
        self.process_data('test')
        self.process_data('train')

    def _phone_encoder(self):
        ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
        ph_set = []
        if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
            for ph_sent in self.item2ph.values():
                ph_set += ph_sent.split(' ')
            ph_set = sorted(set(ph_set))
            json.dump(ph_set, open(ph_set_fn, 'w'))
            print("| Build phone set: ", ph_set)
        else:
            ph_set = json.load(open(ph_set_fn, 'r'))
            print("| Load phone set: ", ph_set)
        return build_phone_encoder(hparams['binary_data_dir'])

    # @staticmethod
    # def get_pitch(wav_fn, spec, res):
    #     wav_suffix = '_wf0.wav'
    #     f0_suffix = '_f0.npy'
    #     f0fn = wav_fn.replace(wav_suffix, f0_suffix)
    #     pitch_info = np.load(f0fn)
    #     f0 = [x[1] for x in pitch_info]
    #     spec_x_coor = np.arange(0, 1, 1 / len(spec))[:len(spec)]
    #     f0_x_coor = np.arange(0, 1, 1 / len(f0))[:len(f0)]
    #     f0 = interp1d(f0_x_coor, f0, 'nearest', fill_value='extrapolate')(spec_x_coor)[:len(spec)]
    #     # f0_x_coor = np.arange(0, 1, 1 / len(f0))
    #     # f0_x_coor[-1] = 1
    #     # f0 = interp1d(f0_x_coor, f0, 'nearest')(spec_x_coor)[:len(spec)]
    #     if sum(f0) == 0:
    #         raise BinarizationError("Empty f0")
    #     assert len(f0) == len(spec), (len(f0), len(spec))
    #     pitch_coarse = f0_to_coarse(f0)
    #
    #     # vis f0
    #     # import matplotlib.pyplot as plt
    #     # from textgrid import TextGrid
    #     # tg_fn = wav_fn.replace(wav_suffix, '.TextGrid')
    #     # fig = plt.figure(figsize=(12, 6))
    #     # plt.pcolor(spec.T, vmin=-5, vmax=0)
    #     # ax = plt.gca()
    #     # ax2 = ax.twinx()
    #     # ax2.plot(f0, color='red')
    #     # ax2.set_ylim(0, 800)
    #     # itvs = TextGrid.fromFile(tg_fn)[0]
    #     # for itv in itvs:
    #     #     x = itv.maxTime * hparams['audio_sample_rate'] / hparams['hop_size']
    #     #     plt.vlines(x=x, ymin=0, ymax=80, color='black')
    #     #     plt.text(x=x, y=20, s=itv.mark, color='black')
    #     # plt.savefig('tmp/20211229_singing_plots_test.png')
    #
    #     res['f0'] = f0
    #     res['pitch'] = pitch_coarse

    @classmethod
    def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
        if hparams['vocoder'] in VOCODERS:
            wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
        else:
            wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
        res = {
            'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
            'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
        }
        try:
            if binarization_args['with_f0']:
                # cls.get_pitch(wav_fn, mel, res)
                cls.get_pitch(wav, mel, res)
            if binarization_args['with_txt']:
                try:
                    # print(ph)
                    phone_encoded = res['phone'] = encoder.encode(ph)
                except:
                    traceback.print_exc()
                    raise BinarizationError(f"Empty phoneme")
                if binarization_args['with_align']:
                    cls.get_align(tg_fn, ph, mel, phone_encoded, res)
        except BinarizationError as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        return res


class MidiSingingBinarizer(SingingBinarizer):
    item2midi = {}
    item2midi_dur = {}
    item2is_slur = {}
    item2ph_durs = {}
    item2wdb = {}

    def load_meta_data(self):
        for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
            meta_midi = json.load(open(os.path.join(processed_data_dir, 'meta.json')))   # [list of dict]

            for song_item in meta_midi:
                item_name = raw_item_name = song_item['item_name']
                if len(self.processed_data_dirs) > 1:
                    item_name = f'ds{ds_id}_{item_name}'
                self.item2wavfn[item_name] = song_item['wav_fn']
                self.item2txt[item_name] = song_item['txt']

                self.item2ph[item_name] = ' '.join(song_item['phs'])
                self.item2wdb[item_name] = [1 if x in ALL_YUNMU + ['AP', 'SP', '<SIL>'] else 0 for x in song_item['phs']]
                self.item2ph_durs[item_name] = song_item['ph_dur']

                self.item2midi[item_name] = song_item['notes']
                self.item2midi_dur[item_name] = song_item['notes_dur']
                self.item2is_slur[item_name] = song_item['is_slur']
                self.item2spk[item_name] = 'pop-cs'
                if len(self.processed_data_dirs) > 1:
                    self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"

        print('spkers: ', set(self.item2spk.values()))
        self.item_names = sorted(list(self.item2txt.keys()))
        if self.binarization_args['shuffle']:
            random.seed(1234)
            random.shuffle(self.item_names)
        self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)

    @staticmethod
    def get_pitch(wav_fn, wav, spec, ph, res):
        wav_suffix = '.wav'
        # midi_suffix = '.mid'
        wav_dir = 'wavs'
        f0_dir = 'f0'

        item_name = '/'.join(os.path.splitext(wav_fn)[0].split('/')[-2:]).replace('_wf0', '')
        res['pitch_midi'] = np.asarray(MidiSingingBinarizer.item2midi[item_name])
        res['midi_dur'] = np.asarray(MidiSingingBinarizer.item2midi_dur[item_name])
        res['is_slur'] = np.asarray(MidiSingingBinarizer.item2is_slur[item_name])
        res['word_boundary'] = np.asarray(MidiSingingBinarizer.item2wdb[item_name])
        assert res['pitch_midi'].shape == res['midi_dur'].shape == res['is_slur'].shape, (
        res['pitch_midi'].shape, res['midi_dur'].shape, res['is_slur'].shape)

        # gt f0.
        gt_f0, gt_pitch_coarse = get_pitch(wav, spec, hparams)
        if sum(gt_f0) == 0:
            raise BinarizationError("Empty **gt** f0")
        res['f0'] = gt_f0
        res['pitch'] = gt_pitch_coarse

    @staticmethod
    def get_align(ph_durs, mel, phone_encoded, res, hop_size=hparams['hop_size'], audio_sample_rate=hparams['audio_sample_rate']):
        mel2ph = np.zeros([mel.shape[0]], int)
        startTime = 0

        for i_ph in range(len(ph_durs)):
            start_frame = int(startTime * audio_sample_rate / hop_size + 0.5)
            end_frame = int((startTime + ph_durs[i_ph]) * audio_sample_rate / hop_size + 0.5)
            mel2ph[start_frame:end_frame] = i_ph + 1
            startTime = startTime + ph_durs[i_ph]

        # print('ph durs: ', ph_durs)
        # print('mel2ph: ', mel2ph, len(mel2ph))
        res['mel2ph'] = mel2ph
        # res['dur'] = None

    @classmethod
    def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
        if hparams['vocoder'] in VOCODERS:
            wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
        else:
            wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
        res = {
            'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
            'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
        }
        try:
            if binarization_args['with_f0']:
                cls.get_pitch(wav_fn, wav, mel, ph, res)
            if binarization_args['with_txt']:
                try:
                    phone_encoded = res['phone'] = encoder.encode(ph)
                except:
                    traceback.print_exc()
                    raise BinarizationError(f"Empty phoneme")
                if binarization_args['with_align']:
                    cls.get_align(MidiSingingBinarizer.item2ph_durs[item_name], mel, phone_encoded, res)
        except BinarizationError as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        return res


class ZhSingingBinarizer(ZhBinarizer, SingingBinarizer):
    pass

class M4SingerBinarizer(MidiSingingBinarizer):
    item2midi = {}
    item2midi_dur = {}
    item2is_slur = {}
    item2ph_durs = {}
    item2wdb = {}

    def split_train_test_set(self, item_names):
        item_names = deepcopy(item_names)
        test_item_names = [x for x in item_names if any([x.startswith(ts) for ts in hparams['test_prefixes']])]
        train_item_names = [x for x in item_names if x not in set(test_item_names)]
        logging.info("train {}".format(len(train_item_names)))
        logging.info("test {}".format(len(test_item_names)))
        return train_item_names, test_item_names

    def load_meta_data(self):
        raw_data_dir = hparams['raw_data_dir']
        song_items = json.load(open(os.path.join(raw_data_dir, 'meta.json')))  # [list of dict]
        for song_item in song_items:
            item_name = raw_item_name = song_item['item_name']
            singer, song_name, sent_id = item_name.split("#")
            self.item2wavfn[item_name] = f'{raw_data_dir}/{singer}#{song_name}/{sent_id}.wav'
            self.item2txt[item_name] = song_item['txt']

            self.item2ph[item_name] = ' '.join(song_item['phs'])
            self.item2ph_durs[item_name] = song_item['ph_dur']

            self.item2midi[item_name] = song_item['notes']
            self.item2midi_dur[item_name] = song_item['notes_dur']
            self.item2is_slur[item_name] = song_item['is_slur']
            self.item2wdb[item_name] = [1 if (0 < i < len(song_item['phs']) - 1 and p in ALL_YUNMU + ['<SP>', '<AP>'])\
                                        or i == len(song_item['phs']) - 1 else 0 for i, p in enumerate(song_item['phs'])]
            self.item2spk[item_name] = singer

        print('spkers: ', set(self.item2spk.values()))
        self.item_names = sorted(list(self.item2txt.keys()))
        if self.binarization_args['shuffle']:
            random.seed(1234)
            random.shuffle(self.item_names)
        self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)

    @staticmethod
    def get_pitch(item_name, wav, spec, ph, res):
        wav_suffix = '.wav'
        # midi_suffix = '.mid'
        wav_dir = 'wavs'
        f0_dir = 'text_f0_align'

        #item_name = os.path.splitext(os.path.basename(wav_fn))[0]
        res['pitch_midi'] = np.asarray(M4SingerBinarizer.item2midi[item_name])
        res['midi_dur'] = np.asarray(M4SingerBinarizer.item2midi_dur[item_name])
        res['is_slur'] = np.asarray(M4SingerBinarizer.item2is_slur[item_name])
        res['word_boundary'] = np.asarray(M4SingerBinarizer.item2wdb[item_name])
        assert res['pitch_midi'].shape == res['midi_dur'].shape == res['is_slur'].shape, (res['pitch_midi'].shape, res['midi_dur'].shape, res['is_slur'].shape)

        # gt f0.
        # f0 = None
        # f0_suffix = '_f0.npy'
        # f0fn = wav_fn.replace(wav_suffix, f0_suffix).replace(wav_dir, f0_dir)
        # pitch_info = np.load(f0fn)
        # f0 = [x[1] for x in pitch_info]
        # spec_x_coor = np.arange(0, 1, 1 / len(spec))[:len(spec)]
        #
        # f0_x_coor = np.arange(0, 1, 1 / len(f0))[:len(f0)]
        # f0 = interp1d(f0_x_coor, f0, 'nearest', fill_value='extrapolate')(spec_x_coor)[:len(spec)]
        # if sum(f0) == 0:
        #     raise BinarizationError("Empty **gt** f0")
        #
        # pitch_coarse = f0_to_coarse(f0)
        # res['f0'] = f0
        # res['pitch'] = pitch_coarse

        # gt f0.
        gt_f0, gt_pitch_coarse = get_pitch(wav, spec, hparams)
        if sum(gt_f0) == 0:
            raise BinarizationError("Empty **gt** f0")
        res['f0'] = gt_f0
        res['pitch'] = gt_pitch_coarse

    @classmethod
    def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
        if hparams['vocoder'] in VOCODERS:
            wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
        else:
            wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
        res = {
            'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
            'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
        }
        try:
            if binarization_args['with_f0']:
                cls.get_pitch(item_name, wav, mel, ph, res)
            if binarization_args['with_txt']:
                try:
                    phone_encoded = res['phone'] = encoder.encode(ph)
                except:
                    traceback.print_exc()
                    raise BinarizationError(f"Empty phoneme")
                if binarization_args['with_align']:
                    cls.get_align(M4SingerBinarizer.item2ph_durs[item_name], mel, phone_encoded, res)
        except BinarizationError as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        return res

if __name__ == "__main__":
    SingingBinarizer().process()