Spaces:
Running
Running
File size: 17,172 Bytes
26925fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import random
from copy import deepcopy
import pandas as pd
import logging
from tqdm import tqdm
import json
import glob
import re
from resemblyzer import VoiceEncoder
import traceback
import numpy as np
import pretty_midi
import librosa
from scipy.interpolate import interp1d
import torch
from textgrid import TextGrid
from utils.hparams import hparams
from data_gen.tts.data_gen_utils import build_phone_encoder, get_pitch
from utils.pitch_utils import f0_to_coarse
from data_gen.tts.base_binarizer import BaseBinarizer, BinarizationError
from data_gen.tts.binarizer_zh import ZhBinarizer
from data_gen.tts.txt_processors.zh_g2pM import ALL_YUNMU
from vocoders.base_vocoder import VOCODERS
class SingingBinarizer(BaseBinarizer):
def __init__(self, processed_data_dir=None):
if processed_data_dir is None:
processed_data_dir = hparams['processed_data_dir']
self.processed_data_dirs = processed_data_dir.split(",")
self.binarization_args = hparams['binarization_args']
self.pre_align_args = hparams['pre_align_args']
self.item2txt = {}
self.item2ph = {}
self.item2wavfn = {}
self.item2f0fn = {}
self.item2tgfn = {}
self.item2spk = {}
def split_train_test_set(self, item_names):
item_names = deepcopy(item_names)
test_item_names = [x for x in item_names if any([ts in x for ts in hparams['test_prefixes']])]
train_item_names = [x for x in item_names if x not in set(test_item_names)]
logging.info("train {}".format(len(train_item_names)))
logging.info("test {}".format(len(test_item_names)))
return train_item_names, test_item_names
def load_meta_data(self):
for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
wav_suffix = '_wf0.wav'
txt_suffix = '.txt'
ph_suffix = '_ph.txt'
tg_suffix = '.TextGrid'
all_wav_pieces = glob.glob(f'{processed_data_dir}/*/*{wav_suffix}')
for piece_path in all_wav_pieces:
item_name = raw_item_name = piece_path[len(processed_data_dir)+1:].replace('/', '-')[:-len(wav_suffix)]
if len(self.processed_data_dirs) > 1:
item_name = f'ds{ds_id}_{item_name}'
self.item2txt[item_name] = open(f'{piece_path.replace(wav_suffix, txt_suffix)}').readline()
self.item2ph[item_name] = open(f'{piece_path.replace(wav_suffix, ph_suffix)}').readline()
self.item2wavfn[item_name] = piece_path
self.item2spk[item_name] = re.split('-|#', piece_path.split('/')[-2])[0]
if len(self.processed_data_dirs) > 1:
self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
self.item2tgfn[item_name] = piece_path.replace(wav_suffix, tg_suffix)
print('spkers: ', set(self.item2spk.values()))
self.item_names = sorted(list(self.item2txt.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)
@property
def train_item_names(self):
return self._train_item_names
@property
def valid_item_names(self):
return self._test_item_names
@property
def test_item_names(self):
return self._test_item_names
def process(self):
self.load_meta_data()
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
self.spk_map = self.build_spk_map()
print("| spk_map: ", self.spk_map)
spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
json.dump(self.spk_map, open(spk_map_fn, 'w'))
self.phone_encoder = self._phone_encoder()
self.process_data('valid')
self.process_data('test')
self.process_data('train')
def _phone_encoder(self):
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = []
if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
for ph_sent in self.item2ph.values():
ph_set += ph_sent.split(' ')
ph_set = sorted(set(ph_set))
json.dump(ph_set, open(ph_set_fn, 'w'))
print("| Build phone set: ", ph_set)
else:
ph_set = json.load(open(ph_set_fn, 'r'))
print("| Load phone set: ", ph_set)
return build_phone_encoder(hparams['binary_data_dir'])
# @staticmethod
# def get_pitch(wav_fn, spec, res):
# wav_suffix = '_wf0.wav'
# f0_suffix = '_f0.npy'
# f0fn = wav_fn.replace(wav_suffix, f0_suffix)
# pitch_info = np.load(f0fn)
# f0 = [x[1] for x in pitch_info]
# spec_x_coor = np.arange(0, 1, 1 / len(spec))[:len(spec)]
# f0_x_coor = np.arange(0, 1, 1 / len(f0))[:len(f0)]
# f0 = interp1d(f0_x_coor, f0, 'nearest', fill_value='extrapolate')(spec_x_coor)[:len(spec)]
# # f0_x_coor = np.arange(0, 1, 1 / len(f0))
# # f0_x_coor[-1] = 1
# # f0 = interp1d(f0_x_coor, f0, 'nearest')(spec_x_coor)[:len(spec)]
# if sum(f0) == 0:
# raise BinarizationError("Empty f0")
# assert len(f0) == len(spec), (len(f0), len(spec))
# pitch_coarse = f0_to_coarse(f0)
#
# # vis f0
# # import matplotlib.pyplot as plt
# # from textgrid import TextGrid
# # tg_fn = wav_fn.replace(wav_suffix, '.TextGrid')
# # fig = plt.figure(figsize=(12, 6))
# # plt.pcolor(spec.T, vmin=-5, vmax=0)
# # ax = plt.gca()
# # ax2 = ax.twinx()
# # ax2.plot(f0, color='red')
# # ax2.set_ylim(0, 800)
# # itvs = TextGrid.fromFile(tg_fn)[0]
# # for itv in itvs:
# # x = itv.maxTime * hparams['audio_sample_rate'] / hparams['hop_size']
# # plt.vlines(x=x, ymin=0, ymax=80, color='black')
# # plt.text(x=x, y=20, s=itv.mark, color='black')
# # plt.savefig('tmp/20211229_singing_plots_test.png')
#
# res['f0'] = f0
# res['pitch'] = pitch_coarse
@classmethod
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
res = {
'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
}
try:
if binarization_args['with_f0']:
# cls.get_pitch(wav_fn, mel, res)
cls.get_pitch(wav, mel, res)
if binarization_args['with_txt']:
try:
# print(ph)
phone_encoded = res['phone'] = encoder.encode(ph)
except:
traceback.print_exc()
raise BinarizationError(f"Empty phoneme")
if binarization_args['with_align']:
cls.get_align(tg_fn, ph, mel, phone_encoded, res)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
return res
class MidiSingingBinarizer(SingingBinarizer):
item2midi = {}
item2midi_dur = {}
item2is_slur = {}
item2ph_durs = {}
item2wdb = {}
def load_meta_data(self):
for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
meta_midi = json.load(open(os.path.join(processed_data_dir, 'meta.json'))) # [list of dict]
for song_item in meta_midi:
item_name = raw_item_name = song_item['item_name']
if len(self.processed_data_dirs) > 1:
item_name = f'ds{ds_id}_{item_name}'
self.item2wavfn[item_name] = song_item['wav_fn']
self.item2txt[item_name] = song_item['txt']
self.item2ph[item_name] = ' '.join(song_item['phs'])
self.item2wdb[item_name] = [1 if x in ALL_YUNMU + ['AP', 'SP', '<SIL>'] else 0 for x in song_item['phs']]
self.item2ph_durs[item_name] = song_item['ph_dur']
self.item2midi[item_name] = song_item['notes']
self.item2midi_dur[item_name] = song_item['notes_dur']
self.item2is_slur[item_name] = song_item['is_slur']
self.item2spk[item_name] = 'pop-cs'
if len(self.processed_data_dirs) > 1:
self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
print('spkers: ', set(self.item2spk.values()))
self.item_names = sorted(list(self.item2txt.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)
@staticmethod
def get_pitch(wav_fn, wav, spec, ph, res):
wav_suffix = '.wav'
# midi_suffix = '.mid'
wav_dir = 'wavs'
f0_dir = 'f0'
item_name = '/'.join(os.path.splitext(wav_fn)[0].split('/')[-2:]).replace('_wf0', '')
res['pitch_midi'] = np.asarray(MidiSingingBinarizer.item2midi[item_name])
res['midi_dur'] = np.asarray(MidiSingingBinarizer.item2midi_dur[item_name])
res['is_slur'] = np.asarray(MidiSingingBinarizer.item2is_slur[item_name])
res['word_boundary'] = np.asarray(MidiSingingBinarizer.item2wdb[item_name])
assert res['pitch_midi'].shape == res['midi_dur'].shape == res['is_slur'].shape, (
res['pitch_midi'].shape, res['midi_dur'].shape, res['is_slur'].shape)
# gt f0.
gt_f0, gt_pitch_coarse = get_pitch(wav, spec, hparams)
if sum(gt_f0) == 0:
raise BinarizationError("Empty **gt** f0")
res['f0'] = gt_f0
res['pitch'] = gt_pitch_coarse
@staticmethod
def get_align(ph_durs, mel, phone_encoded, res, hop_size=hparams['hop_size'], audio_sample_rate=hparams['audio_sample_rate']):
mel2ph = np.zeros([mel.shape[0]], int)
startTime = 0
for i_ph in range(len(ph_durs)):
start_frame = int(startTime * audio_sample_rate / hop_size + 0.5)
end_frame = int((startTime + ph_durs[i_ph]) * audio_sample_rate / hop_size + 0.5)
mel2ph[start_frame:end_frame] = i_ph + 1
startTime = startTime + ph_durs[i_ph]
# print('ph durs: ', ph_durs)
# print('mel2ph: ', mel2ph, len(mel2ph))
res['mel2ph'] = mel2ph
# res['dur'] = None
@classmethod
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
res = {
'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
}
try:
if binarization_args['with_f0']:
cls.get_pitch(wav_fn, wav, mel, ph, res)
if binarization_args['with_txt']:
try:
phone_encoded = res['phone'] = encoder.encode(ph)
except:
traceback.print_exc()
raise BinarizationError(f"Empty phoneme")
if binarization_args['with_align']:
cls.get_align(MidiSingingBinarizer.item2ph_durs[item_name], mel, phone_encoded, res)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
return res
class ZhSingingBinarizer(ZhBinarizer, SingingBinarizer):
pass
class M4SingerBinarizer(MidiSingingBinarizer):
item2midi = {}
item2midi_dur = {}
item2is_slur = {}
item2ph_durs = {}
item2wdb = {}
def split_train_test_set(self, item_names):
item_names = deepcopy(item_names)
test_item_names = [x for x in item_names if any([x.startswith(ts) for ts in hparams['test_prefixes']])]
train_item_names = [x for x in item_names if x not in set(test_item_names)]
logging.info("train {}".format(len(train_item_names)))
logging.info("test {}".format(len(test_item_names)))
return train_item_names, test_item_names
def load_meta_data(self):
raw_data_dir = hparams['raw_data_dir']
song_items = json.load(open(os.path.join(raw_data_dir, 'meta.json'))) # [list of dict]
for song_item in song_items:
item_name = raw_item_name = song_item['item_name']
singer, song_name, sent_id = item_name.split("#")
self.item2wavfn[item_name] = f'{raw_data_dir}/{singer}#{song_name}/{sent_id}.wav'
self.item2txt[item_name] = song_item['txt']
self.item2ph[item_name] = ' '.join(song_item['phs'])
self.item2ph_durs[item_name] = song_item['ph_dur']
self.item2midi[item_name] = song_item['notes']
self.item2midi_dur[item_name] = song_item['notes_dur']
self.item2is_slur[item_name] = song_item['is_slur']
self.item2wdb[item_name] = [1 if (0 < i < len(song_item['phs']) - 1 and p in ALL_YUNMU + ['<SP>', '<AP>'])\
or i == len(song_item['phs']) - 1 else 0 for i, p in enumerate(song_item['phs'])]
self.item2spk[item_name] = singer
print('spkers: ', set(self.item2spk.values()))
self.item_names = sorted(list(self.item2txt.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)
@staticmethod
def get_pitch(item_name, wav, spec, ph, res):
wav_suffix = '.wav'
# midi_suffix = '.mid'
wav_dir = 'wavs'
f0_dir = 'text_f0_align'
#item_name = os.path.splitext(os.path.basename(wav_fn))[0]
res['pitch_midi'] = np.asarray(M4SingerBinarizer.item2midi[item_name])
res['midi_dur'] = np.asarray(M4SingerBinarizer.item2midi_dur[item_name])
res['is_slur'] = np.asarray(M4SingerBinarizer.item2is_slur[item_name])
res['word_boundary'] = np.asarray(M4SingerBinarizer.item2wdb[item_name])
assert res['pitch_midi'].shape == res['midi_dur'].shape == res['is_slur'].shape, (res['pitch_midi'].shape, res['midi_dur'].shape, res['is_slur'].shape)
# gt f0.
# f0 = None
# f0_suffix = '_f0.npy'
# f0fn = wav_fn.replace(wav_suffix, f0_suffix).replace(wav_dir, f0_dir)
# pitch_info = np.load(f0fn)
# f0 = [x[1] for x in pitch_info]
# spec_x_coor = np.arange(0, 1, 1 / len(spec))[:len(spec)]
#
# f0_x_coor = np.arange(0, 1, 1 / len(f0))[:len(f0)]
# f0 = interp1d(f0_x_coor, f0, 'nearest', fill_value='extrapolate')(spec_x_coor)[:len(spec)]
# if sum(f0) == 0:
# raise BinarizationError("Empty **gt** f0")
#
# pitch_coarse = f0_to_coarse(f0)
# res['f0'] = f0
# res['pitch'] = pitch_coarse
# gt f0.
gt_f0, gt_pitch_coarse = get_pitch(wav, spec, hparams)
if sum(gt_f0) == 0:
raise BinarizationError("Empty **gt** f0")
res['f0'] = gt_f0
res['pitch'] = gt_pitch_coarse
@classmethod
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
res = {
'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
}
try:
if binarization_args['with_f0']:
cls.get_pitch(item_name, wav, mel, ph, res)
if binarization_args['with_txt']:
try:
phone_encoded = res['phone'] = encoder.encode(ph)
except:
traceback.print_exc()
raise BinarizationError(f"Empty phoneme")
if binarization_args['with_align']:
cls.get_align(M4SingerBinarizer.item2ph_durs[item_name], mel, phone_encoded, res)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
return res
if __name__ == "__main__":
SingingBinarizer().process()
|