File size: 20,243 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner
from .data import VideoData, get_video_fps, save_video, search_for_images
import os
import gradio as gr


def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder):
    frames_guide = VideoData(video_guide, video_guide_folder)
    frames_style = VideoData(video_style, video_style_folder)
    message = ""
    if len(frames_guide) < len(frames_style):
        message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n"
        frames_style.set_length(len(frames_guide))
    elif len(frames_guide) > len(frames_style):
        message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n"
        frames_guide.set_length(len(frames_style))
    height_guide, width_guide = frames_guide.shape()
    height_style, width_style = frames_style.shape()
    if height_guide != height_style or width_guide != width_style:
        message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n"
        frames_style.set_shape(height_guide, width_guide)
    return frames_guide, frames_style, message


def smooth_video(
    video_guide,
    video_guide_folder,
    video_style,
    video_style_folder,
    mode,
    window_size,
    batch_size,
    tracking_window_size,
    output_path,
    fps,
    minimum_patch_size,
    num_iter,
    guide_weight,
    initialize,
    progress = None,
):
    # input
    frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder)
    if len(message) > 0:
        print(message)
    # output
    if output_path == "":
        if video_style is None:
            output_path = os.path.join(video_style_folder, "output")
        else:
            output_path = os.path.join(os.path.split(video_style)[0], "output")
        os.makedirs(output_path, exist_ok=True)
        print("No valid output_path. Your video will be saved here:", output_path)
    elif not os.path.exists(output_path):
        os.makedirs(output_path, exist_ok=True)
        print("Your video will be saved here:", output_path)
    frames_path = os.path.join(output_path, "frames")
    video_path = os.path.join(output_path, "video.mp4")
    os.makedirs(frames_path, exist_ok=True)
    # process
    if mode == "Fast" or mode == "Balanced":
        tracking_window_size = 0
    ebsynth_config = {
        "minimum_patch_size": minimum_patch_size,
        "threads_per_block": 8,
        "num_iter": num_iter,
        "gpu_id": 0,
        "guide_weight": guide_weight,
        "initialize": initialize,
        "tracking_window_size": tracking_window_size,
    }
    if mode == "Fast":
        FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
    elif mode == "Balanced":
        BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
    elif mode == "Accurate":
        AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
    # output
    try:
        fps = int(fps)
    except:
        fps = get_video_fps(video_style) if video_style is not None else 30
    print("Fps:", fps)
    print("Saving video...")
    video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps)
    print("Success!")
    print("Your frames are here:", frames_path)
    print("Your video is here:", video_path)
    return output_path, fps, video_path


class KeyFrameMatcher:
    def __init__(self):
        pass

    def extract_number_from_filename(self, file_name):
        result = []
        number = -1
        for i in file_name:
            if ord(i)>=ord("0") and ord(i)<=ord("9"):
                if number == -1:
                    number = 0
                number = number*10 + ord(i) - ord("0")
            else:
                if number != -1:
                    result.append(number)
                    number = -1
        if number != -1:
            result.append(number)
        result = tuple(result)
        return result

    def extract_number_from_filenames(self, file_names):
        numbers = [self.extract_number_from_filename(file_name) for file_name in file_names]
        min_length = min(len(i) for i in numbers)
        for i in range(min_length-1, -1, -1):
            if len(set(number[i] for number in numbers))==len(file_names):
                return [number[i] for number in numbers]
        return list(range(len(file_names)))

    def match_using_filename(self, file_names_a, file_names_b):
        file_names_b_set = set(file_names_b)
        matched_file_name = []
        for file_name in file_names_a:
            if file_name not in file_names_b_set:
                matched_file_name.append(None)
            else:
                matched_file_name.append(file_name)
        return matched_file_name

    def match_using_numbers(self, file_names_a, file_names_b):
        numbers_a = self.extract_number_from_filenames(file_names_a)
        numbers_b = self.extract_number_from_filenames(file_names_b)
        numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)}
        matched_file_name = []
        for number in numbers_a:
            if number in numbers_b_dict:
                matched_file_name.append(numbers_b_dict[number])
            else:
                matched_file_name.append(None)
        return matched_file_name

    def match_filenames(self, file_names_a, file_names_b):
        matched_file_name = self.match_using_filename(file_names_a, file_names_b)
        if sum([i is not None for i in matched_file_name]) > 0:
            return matched_file_name
        matched_file_name = self.match_using_numbers(file_names_a, file_names_b)
        return matched_file_name


def detect_frames(frames_path, keyframes_path):
    if not os.path.exists(frames_path) and not os.path.exists(keyframes_path):
        return "Please input the directory of guide video and rendered frames"
    elif not os.path.exists(frames_path):
        return "Please input the directory of guide video"
    elif not os.path.exists(keyframes_path):
        return "Please input the directory of rendered frames"
    frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
    keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
    if len(frames)==0:
        return f"No images detected in {frames_path}"
    if len(keyframes)==0:
        return f"No images detected in {keyframes_path}"
    matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
    max_filename_length = max([len(i) for i in frames])
    if sum([i is not None for i in matched_keyframes])==0:
        message = ""
        for frame, matched_keyframe in zip(frames, matched_keyframes):
            message += frame + " " * (max_filename_length - len(frame) + 1)
            message += "--> No matched keyframes\n"
    else:
        message = ""
        for frame, matched_keyframe in zip(frames, matched_keyframes):
            message += frame + " " * (max_filename_length - len(frame) + 1)
            if matched_keyframe is None:
                message += "--> [to be rendered]\n"
            else:
                message += f"--> {matched_keyframe}\n"
    return message


def check_input_for_interpolating(frames_path, keyframes_path):
    # search for images
    frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
    keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
    # match frames
    matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
    file_list = [file_name for file_name in matched_keyframes if file_name is not None]
    index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None]
    frames_guide = VideoData(None, frames_path)
    frames_style = VideoData(None, keyframes_path, file_list=file_list)
    # match shape
    message = ""
    height_guide, width_guide = frames_guide.shape()
    height_style, width_style = frames_style.shape()
    if height_guide != height_style or width_guide != width_style:
        message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n"
        frames_style.set_shape(height_guide, width_guide)
    return frames_guide, frames_style, index_style, message


def interpolate_video(
    frames_path,
    keyframes_path,
    output_path,
    fps,
    batch_size,
    tracking_window_size,
    minimum_patch_size,
    num_iter,
    guide_weight,
    initialize,
    progress = None,
):
    # input
    frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path)
    if len(message) > 0:
        print(message)
    # output
    if output_path == "":
        output_path = os.path.join(keyframes_path, "output")
        os.makedirs(output_path, exist_ok=True)
        print("No valid output_path. Your video will be saved here:", output_path)
    elif not os.path.exists(output_path):
        os.makedirs(output_path, exist_ok=True)
        print("Your video will be saved here:", output_path)
    output_frames_path = os.path.join(output_path, "frames")
    output_video_path = os.path.join(output_path, "video.mp4")
    os.makedirs(output_frames_path, exist_ok=True)
    # process
    ebsynth_config = {
        "minimum_patch_size": minimum_patch_size,
        "threads_per_block": 8,
        "num_iter": num_iter,
        "gpu_id": 0,
        "guide_weight": guide_weight,
        "initialize": initialize,
        "tracking_window_size": tracking_window_size
    }
    if len(index_style)==1:
        InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
    else:
        InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
    try:
        fps = int(fps)
    except:
        fps = 30
    print("Fps:", fps)
    print("Saving video...")
    video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps)
    print("Success!")
    print("Your frames are here:", output_frames_path)
    print("Your video is here:", video_path)
    return output_path, fps, video_path


def on_ui_tabs():
    with gr.Blocks(analytics_enabled=False) as ui_component:
        with gr.Tab("Blend"):
            gr.Markdown("""
# Blend

Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution.
            """)
            with gr.Row():
                with gr.Column():
                    with gr.Tab("Guide video"):
                        video_guide = gr.Video(label="Guide video")
                    with gr.Tab("Guide video (images format)"):
                        video_guide_folder = gr.Textbox(label="Guide video (images format)", value="")
                with gr.Column():
                    with gr.Tab("Style video"):
                        video_style = gr.Video(label="Style video")
                    with gr.Tab("Style video (images format)"):
                        video_style_folder = gr.Textbox(label="Style video (images format)", value="")
                with gr.Column():
                    output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video")
                    fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
                    video_output = gr.Video(label="Output video", interactive=False, show_share_button=True)
            btn = gr.Button(value="Blend")
            with gr.Row():
                with gr.Column():
                    gr.Markdown("# Settings")
                    mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True)
                    window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True)
                    batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
                    tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True)
                    gr.Markdown("## Advanced Settings")
                    minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True)
                    num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
                    guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
                    initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
                with gr.Column():
                    gr.Markdown("""
# Reference

* Output directory: the directory to save the video.
* Inference mode

|Mode|Time|Memory|Quality|Frame by frame output|Description|
|-|-|-|-|-|-|
|Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.|
|Balanced|■■|■|■■|Yes|Blend the frames naively.|
|Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.|

* Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy.
* Batch size: a larger batch size makes the program faster but requires more VRAM.
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
* Advanced settings
    * Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5)
    * Number of iterations: the number of iterations of patch matching. (Default: 5)
    * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
    * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
                    """)
            btn.click(
                smooth_video,
                inputs=[
                    video_guide,
                    video_guide_folder,
                    video_style,
                    video_style_folder,
                    mode,
                    window_size,
                    batch_size,
                    tracking_window_size,
                    output_path,
                    fps,
                    minimum_patch_size,
                    num_iter,
                    guide_weight,
                    initialize
                ],
                outputs=[output_path, fps, video_output]
            )
        with gr.Tab("Interpolate"):
            gr.Markdown("""
# Interpolate

Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution.
            """)
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        with gr.Column():
                            video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="")
                        with gr.Column():
                            rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="")
                    with gr.Row():
                        detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False)
                    video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
                    rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
                with gr.Column():
                    output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes")
                    fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
                    video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True)
            btn_ = gr.Button(value="Interpolate")
            with gr.Row():
                with gr.Column():
                    gr.Markdown("# Settings")
                    batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
                    tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True)
                    gr.Markdown("## Advanced Settings")
                    minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True)
                    num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
                    guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
                    initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
                with gr.Column():
                    gr.Markdown("""
# Reference

* Output directory: the directory to save the video.
* Batch size: a larger batch size makes the program faster but requires more VRAM.
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
* Advanced settings
    * Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)**
    * Number of iterations: the number of iterations of patch matching. (Default: 5)
    * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
    * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
                    """)
            btn_.click(
                interpolate_video,
                inputs=[
                    video_guide_folder_,
                    rendered_keyframes_,
                    output_path_,
                    fps_,
                    batch_size_,
                    tracking_window_size_,
                    minimum_patch_size_,
                    num_iter_,
                    guide_weight_,
                    initialize_,
                ],
                outputs=[output_path_, fps_, video_output_]
            )

        return [(ui_component, "FastBlend", "FastBlend_ui")]