Spaces:
Runtime error
Runtime error
File size: 15,519 Bytes
be9690e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import argparse
import datetime as dt
import os
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
import torch
from matcha.hifigan.config import v1
from matcha.hifigan.denoiser import Denoiser
from matcha.hifigan.env import AttrDict
from matcha.hifigan.models import Generator as HiFiGAN
from matcha.models.matcha_tts import MatchaTTS
from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
MATCHA_URLS = {
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
}
VOCODER_URLS = {
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
}
MULTISPEAKER_MODEL = {
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
}
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
def plot_spectrogram_to_numpy(spectrogram, filename):
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.title("Synthesised Mel-Spectrogram")
fig.canvas.draw()
plt.savefig(filename)
def process_text(i: int, text: str, device: torch.device):
print(f"[{i}] - Input text: {text}")
x = torch.tensor(
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0),
dtype=torch.long,
device=device,
)[None]
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
x_phones = sequence_to_text(x.squeeze(0).tolist())
print(f"[{i}] - Phonetised text: {x_phones[1::2]}")
return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones}
def get_texts(args):
if args.text:
texts = [args.text]
else:
with open(args.file, encoding="utf-8") as f:
texts = f.readlines()
return texts
def assert_required_models_available(args):
save_dir = get_user_data_dir()
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
model_path = args.checkpoint_path
else:
model_path = save_dir / f"{args.model}.ckpt"
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
return {"matcha": model_path, "vocoder": vocoder_path}
def load_hifigan(checkpoint_path, device):
h = AttrDict(v1)
hifigan = HiFiGAN(h).to(device)
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
_ = hifigan.eval()
hifigan.remove_weight_norm()
return hifigan
def load_vocoder(vocoder_name, checkpoint_path, device):
print(f"[!] Loading {vocoder_name}!")
vocoder = None
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
vocoder = load_hifigan(checkpoint_path, device)
else:
raise NotImplementedError(
f"Vocoder {vocoder_name} not implemented! define a load_<<vocoder_name>> method for it"
)
denoiser = Denoiser(vocoder, mode="zeros")
print(f"[+] {vocoder_name} loaded!")
return vocoder, denoiser
def load_matcha(model_name, checkpoint_path, device):
print(f"[!] Loading {model_name}!")
model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
_ = model.eval()
print(f"[+] {model_name} loaded!")
return model
def to_waveform(mel, vocoder, denoiser=None):
audio = vocoder(mel).clamp(-1, 1)
if denoiser is not None:
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
return audio.cpu().squeeze()
def save_to_folder(filename: str, output: dict, folder: str):
folder = Path(folder)
folder.mkdir(exist_ok=True, parents=True)
plot_spectrogram_to_numpy(np.array(output["mel"].squeeze().float().cpu()), f"{filename}.png")
np.save(folder / f"{filename}", output["mel"].cpu().numpy())
sf.write(folder / f"{filename}.wav", output["waveform"], 22050, "PCM_24")
return folder.resolve() / f"{filename}.wav"
def validate_args(args):
assert (
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.steps > 0, "Number of ODE steps must be greater than 0"
if args.checkpoint_path is None:
# When using pretrained models
if args.model in SINGLESPEAKER_MODEL:
args = validate_args_for_single_speaker_model(args)
if args.model in MULTISPEAKER_MODEL:
args = validate_args_for_multispeaker_model(args)
else:
# When using a custom model
if args.vocoder != "hifigan_univ_v1":
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
warnings.warn(warn_, UserWarning)
if args.speaking_rate is None:
args.speaking_rate = 1.0
if args.batched:
assert args.batch_size > 0, "Batch size must be greater than 0"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
return args
def validate_args_for_multispeaker_model(args):
if args.vocoder is not None:
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
if args.spk is not None:
assert (
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
), f"Speaker ID must be between {spk_range} for this model."
else:
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
warnings.warn(warn_, UserWarning)
args.spk = available_spk_id
return args
def validate_args_for_single_speaker_model(args):
if args.vocoder is not None:
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
warnings.warn(warn_, UserWarning)
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
return args
@torch.inference_mode()
def cli():
parser = argparse.ArgumentParser(
description=" π΅ Matcha-TTS: A fast TTS architecture with conditional flow matching"
)
parser.add_argument(
"--model",
type=str,
default="matcha_ljspeech",
help="Model to use",
choices=MATCHA_URLS.keys(),
)
parser.add_argument(
"--checkpoint_path",
type=str,
default=None,
help="Path to the custom model checkpoint",
)
parser.add_argument(
"--vocoder",
type=str,
default=None,
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
choices=VOCODER_URLS.keys(),
)
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
parser.add_argument(
"--temperature",
type=float,
default=0.667,
help="Variance of the x0 noise (default: 0.667)",
)
parser.add_argument(
"--speaking_rate",
type=float,
default=None,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
parser.add_argument("--cpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
parser.add_argument(
"--denoiser_strength",
type=float,
default=0.00025,
help="Strength of the vocoder bias denoiser (default: 0.00025)",
)
parser.add_argument(
"--output_folder",
type=str,
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
)
args = parser.parse_args()
args = validate_args(args)
device = get_device(args)
print_config(args)
paths = assert_required_models_available(args)
if args.checkpoint_path is not None:
print(f"[π΅] Loading custom model from {args.checkpoint_path}")
paths["matcha"] = args.checkpoint_path
args.model = "custom_model"
model = load_matcha(args.model, paths["matcha"], device)
vocoder, denoiser = load_vocoder(args.vocoder, paths["vocoder"], device)
texts = get_texts(args)
spk = torch.tensor([args.spk], device=device, dtype=torch.long) if args.spk is not None else None
if len(texts) == 1 or not args.batched:
unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk)
else:
batched_synthesis(args, device, model, vocoder, denoiser, texts, spk)
class BatchedSynthesisDataset(torch.utils.data.Dataset):
def __init__(self, processed_texts):
self.processed_texts = processed_texts
def __len__(self):
return len(self.processed_texts)
def __getitem__(self, idx):
return self.processed_texts[idx]
def batched_collate_fn(batch):
x = []
x_lengths = []
for b in batch:
x.append(b["x"].squeeze(0))
x_lengths.append(b["x_lengths"])
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
x_lengths = torch.concat(x_lengths, dim=0)
return {"x": x, "x_lengths": x_lengths}
def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
total_rtf = []
total_rtf_w = []
processed_text = [process_text(i, text, "cpu") for i, text in enumerate(texts)]
dataloader = torch.utils.data.DataLoader(
BatchedSynthesisDataset(processed_text),
batch_size=args.batch_size,
collate_fn=batched_collate_fn,
num_workers=8,
)
for i, batch in enumerate(dataloader):
i = i + 1
start_t = dt.datetime.now()
output = model.synthesise(
batch["x"].to(device),
batch["x_lengths"].to(device),
n_timesteps=args.steps,
temperature=args.temperature,
spks=spk,
length_scale=args.speaking_rate,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
t = (dt.datetime.now() - start_t).total_seconds()
rtf_w = t * 22050 / (output["waveform"].shape[-1])
print(f"[π΅-Batch: {i}] Matcha-TTS RTF: {output['rtf']:.4f}")
print(f"[π΅-Batch: {i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}")
total_rtf.append(output["rtf"])
total_rtf_w.append(rtf_w)
for j in range(output["mel"].shape[0]):
base_name = f"utterance_{j:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{j:03d}"
length = output["mel_lengths"][j]
new_dict = {"mel": output["mel"][j][:, :length], "waveform": output["waveform"][j][: length * 256]}
location = save_to_folder(base_name, new_dict, args.output_folder)
print(f"[π΅-{j}] Waveform saved: {location}")
print("".join(["="] * 100))
print(f"[π΅] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} Β± {np.std(total_rtf)}")
print(f"[π΅] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} Β± {np.std(total_rtf_w)}")
print("[π΅] Enjoy the freshly whisked π΅ Matcha-TTS!")
def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
total_rtf = []
total_rtf_w = []
for i, text in enumerate(texts):
i = i + 1
base_name = f"utterance_{i:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{i:03d}"
print("".join(["="] * 100))
text = text.strip()
text_processed = process_text(i, text, device)
print(f"[π΅] Whisking Matcha-T(ea)TS for: {i}")
start_t = dt.datetime.now()
output = model.synthesise(
text_processed["x"],
text_processed["x_lengths"],
n_timesteps=args.steps,
temperature=args.temperature,
spks=spk,
length_scale=args.speaking_rate,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
# RTF with HiFiGAN
t = (dt.datetime.now() - start_t).total_seconds()
rtf_w = t * 22050 / (output["waveform"].shape[-1])
print(f"[π΅-{i}] Matcha-TTS RTF: {output['rtf']:.4f}")
print(f"[π΅-{i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}")
total_rtf.append(output["rtf"])
total_rtf_w.append(rtf_w)
location = save_to_folder(base_name, output, args.output_folder)
print(f"[+] Waveform saved: {location}")
print("".join(["="] * 100))
print(f"[π΅] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} Β± {np.std(total_rtf)}")
print(f"[π΅] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} Β± {np.std(total_rtf_w)}")
print("[π΅] Enjoy the freshly whisked π΅ Matcha-TTS!")
def print_config(args):
print("[!] Configurations: ")
print(f"\t- Model: {args.model}")
print(f"\t- Vocoder: {args.vocoder}")
print(f"\t- Temperature: {args.temperature}")
print(f"\t- Speaking rate: {args.speaking_rate}")
print(f"\t- Number of ODE steps: {args.steps}")
print(f"\t- Speaker: {args.spk}")
def get_device(args):
if torch.cuda.is_available() and not args.cpu:
print("[+] GPU Available! Using GPU")
device = torch.device("cuda")
else:
print("[-] GPU not available or forced CPU run! Using CPU")
device = torch.device("cpu")
return device
if __name__ == "__main__":
cli()
|