File size: 23,170 Bytes
e64d6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5927a40
e64d6ac
d2db83c
5927a40
e64d6ac
d2db83c
e64d6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os, sys
import tempfile
import gradio as gr
from src.gradio_demo import SadTalker  
# from src.utils.text2speech import TTSTalker
from huggingface_hub import snapshot_download

import torch
import librosa
from scipy.io.wavfile import write
from transformers import WavLMModel

import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder

import time
from textwrap import dedent

import mdtex2html
from loguru import logger
from transformers import AutoModel, AutoTokenizer

from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
import asyncio


def get_source_image(image):   
        return image

try:
    import webui  # in webui
    in_webui = True
except:
    in_webui = False


def toggle_audio_file(choice):
    if choice == False:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)
    
def ref_video_fn(path_of_ref_video):
    if path_of_ref_video is not None:
        return gr.update(value=True)
    else:
        return gr.update(value=False)
    
def download_model():
    REPO_ID = 'vinthony/SadTalker-V002rc'
    snapshot_download(repo_id=REPO_ID, local_dir='./checkpoints', local_dir_use_symlinks=True)

def sadtalker_demo():

    download_model()

    sad_talker = SadTalker(lazy_load=True)
    # tts_talker = TTSTalker()

download_model()
sad_talker = SadTalker(lazy_load=True)


# ChatGLM2 & FreeVC

'''
def get_wavlm():
    os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
    shutil.move('WavLM-Large.pt', 'wavlm')
'''

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')

print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoint/freevc-24.pth", freevc_24, None)

print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
 
def convert(model, src, tgt):
    with torch.no_grad():
        # tgt
        wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
        wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
        if model == "FreeVC" or model == "FreeVC (24kHz)":
            g_tgt = smodel.embed_utterance(wav_tgt)
            g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
        else:
            wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
            mel_tgt = mel_spectrogram_torch(
                wav_tgt, 
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )
        # src
        wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
        wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
        c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
        # infer
        if model == "FreeVC":
            audio = freevc.infer(c, g=g_tgt)
        elif model == "FreeVC-s":
            audio = freevc_s.infer(c, mel=mel_tgt)
        else:
            audio = freevc_24.infer(c, g=g_tgt)
        audio = audio[0][0].data.cpu().float().numpy()
        if model == "FreeVC" or model == "FreeVC-s":
            write("out.wav", hps.data.sampling_rate, audio)
        else:
            write("out.wav", 24000, audio)
    out = "out.wav"
    return out

# GLM2

#language_dict = tts_order_voice

tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]

# fix timezone in Linux
os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")

# model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"

RETRY_FLAG = False

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()

# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()

has_cuda = torch.cuda.is_available()

# has_cuda = False  # force cpu

if has_cuda:
    model_glm = (
        AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half()
    )  # 3.92G
else:
    model_glm = AutoModel.from_pretrained(
        model_name, trust_remote_code=True
    ).float()  # .float() .half().float()

model_glm = model_glm.eval()

_ = """Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = "<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def predict(
    RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    try:
        chatbot.append((parse_text(input), ""))
    except Exception as exc:
        logger.error(exc)
        logger.debug(f"{chatbot=}")
        _ = """
        if chatbot:
            chatbot[-1] = (parse_text(input), str(exc))
            yield chatbot, history, past_key_values
        # """
        yield chatbot, history, past_key_values

    for response, history, past_key_values in model_glm.stream_chat(
        tokenizer,
        input,
        history,
        past_key_values=past_key_values,
        return_past_key_values=True,
        max_length=max_length,
        top_p=top_p,
        temperature=temperature,
    ):
        chatbot[-1] = (parse_text(input), parse_text(response))
        # chatbot[-1][-1] = parse_text(response)

        yield chatbot, history, past_key_values, parse_text(response)


def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
    if max_length < 10:
        max_length = 4096
    if top_p < 0.1 or top_p > 1:
        top_p = 0.85
    if temperature <= 0 or temperature > 1:
        temperature = 0.01
    try:
        res, _ = model_glm.chat(
            tokenizer,
            input,
            history=[],
            past_key_values=None,
            max_length=max_length,
            top_p=top_p,
            temperature=temperature,
        )
        # logger.debug(f"{res=} \n{_=}")
    except Exception as exc:
        logger.error(f"{exc=}")
        res = str(exc)

    return res


def reset_user_input():
    return gr.update(value="")


def reset_state():
    return [], [], None, ""


# Delete last turn
def delete_last_turn(chat, history):
    if chat and history:
        chat.pop(-1)
        history.pop(-1)
    return chat, history


# Regenerate response
def retry_last_answer(
    user_input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    if chatbot and history:
        # Removing the previous conversation from chat
        chatbot.pop(-1)
        # Setting up a flag to capture a retry
        RETRY_FLAG = True
        # Getting last message from user
        user_input = history[-1][0]
        # Removing bot response from the history
        history.pop(-1)

    yield from predict(
        RETRY_FLAG,  # type: ignore
        user_input,
        chatbot,
        max_length,
        top_p,
        temperature,
        history,
        past_key_values,
    )

# print

def print(text):
    return text

# TTS

async def text_to_speech_edge(text, voice):

    communicate = edge_tts.Communicate(text, "-".join(voice.split('-')[:-1]))
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name

    await communicate.save(tmp_path)

    return tmp_path


with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm"), analytics_enabled=False) as demo:
    gr.HTML("<center>"
            "<h1>📺💕🎶 - ChatGLM2 + Voice Cloning + SadTalker</h1>"
            "</center>")
    gr.Markdown("## <center>🥳 - Chat with any character you like through ChatGLM2-6B, FreeVC and SadTalker in real time</center>")
    gr.Markdown("## <center>⭐ - If you like the this app, please star my [GitHub repo](https://github.com/KevinWang676/ChatGLM2-Voice-Cloning)</center>")

    with gr.Tab("🍻 - ChatGLM2+VC"):
        with gr.Accordion("📒 Info", open=False):
            _ = f""" Some parameters of ChatGLM2:
                * Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
                * Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
                * Top P controls dynamic vocabulary selection based on context.
                """
            gr.Markdown(dedent(_))
        chatbot = gr.Chatbot(height=300)
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Column(scale=12):
                    user_input = gr.Textbox(
                        label="Chat with ChatGLM2 here",
                        placeholder="Enter something here...",
                    )
                    RETRY_FLAG = gr.Checkbox(value=False, visible=False)
        with gr.Column(min_width=32, scale=1):
            with gr.Row():
                submitBtn = gr.Button("Chat now", variant="primary")
                deleteBtn = gr.Button("Delete last turn", variant="secondary")
                retryBtn = gr.Button("Regenerate", variant="secondary")
                    
        with gr.Accordion("🔧 Settings", open=False):
            with gr.Row():
                emptyBtn = gr.Button("Clear History")
                max_length = gr.Slider(
                    0,
                    32768,
                    value=8192,
                    step=1.0,
                    label="Maximum length",
                    interactive=True,
                )
                top_p = gr.Slider(
                    0, 1, value=0.85, step=0.01, label="Top P", interactive=True
                )
                temperature = gr.Slider(
                    0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True
                )
    
    
        with gr.Row():
            test1 = gr.Textbox(label="Response from ChatGLM2 (you can edit the content)", lines = 3)
            with gr.Column():
                language = gr.Dropdown(choices=voices, value="en-US-AnaNeural-Female", label="Please select a voice")
                tts_btn = gr.Button("Generate using Edge-TTS", variant="primary")
            output_audio = gr.Audio(type="filepath", label="Audio generated by Edge-TTS", interactive=False)
    
        tts_btn.click(text_to_speech_edge, inputs=[test1, language], outputs=[output_audio])
    
        with gr.Row():
            model_choice = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC (24kHz)", label="Model", visible=False) 
            audio1 = output_audio
            audio2 = gr.Audio(label="Upload reference audio for voice cloning (~5s)", type='filepath')
            clone_btn = gr.Button("Generate using FreeVC", variant="primary")
            audio_cloned =  gr.Audio(label="Generated audio in a custom voice", type='filepath')
    
        clone_btn.click(convert, inputs=[model_choice, audio1, audio2], outputs=[audio_cloned])
            
        history = gr.State([])
        past_key_values = gr.State(None)
    
        user_input.submit(
            predict,
            [
                RETRY_FLAG,
                user_input,
                chatbot,
                max_length,
                top_p,
                temperature,
                history,
                past_key_values,
            ],
            [chatbot, history, past_key_values, test1],
            show_progress="full",
        )
        submitBtn.click(
            predict,
            [
                RETRY_FLAG,
                user_input,
                chatbot,
                max_length,
                top_p,
                temperature,
                history,
                past_key_values,
            ],
            [chatbot, history, past_key_values, test1],
            show_progress="full",
            api_name="predict",
        )
        submitBtn.click(reset_user_input, [], [user_input])
    
        emptyBtn.click(
            reset_state, outputs=[chatbot, history, past_key_values, test1], show_progress="full"
        )
    
        retryBtn.click(
            retry_last_answer,
            inputs=[
                user_input,
                chatbot,
                max_length,
                top_p,
                temperature,
                history,
                past_key_values,
            ],
            # outputs = [chatbot, history, last_user_message, user_message]
            outputs=[chatbot, history, past_key_values, test1],
        )
        deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])
    
        with gr.Accordion("📔 Prompts", open=False):
            etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
            examples = gr.Examples(
                examples=[
                    ["Explain the plot of Cinderella in a sentence."],
                    [
                        "How long does it take to become proficient in French, and what are the best methods for retaining information?"
                    ],
                    ["What are some common mistakes to avoid when writing code?"],
                    ["Build a prompt to generate a beautiful portrait of a horse"],
                    ["Suggest four metaphors to describe the benefits of AI"],
                    ["Write a pop song about leaving home for the sandy beaches."],
                    ["Write a summary demonstrating my ability to tame lions"],
                    ["鲁迅和周树人什么关系"],
                    ["从前有一头牛,这头牛后面有什么?"],
                    ["正无穷大加一大于正无穷大吗?"],
                    ["正无穷大加正无穷大大于正无穷大吗?"],
                    ["-2的平方根等于什么"],
                    ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
                    ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
                    ["鲁迅和周树人什么关系 用英文回答"],
                    ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
                    [f"{etext} 翻成中文,列出3个版本"],
                    [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
                    ["js 判断一个数是不是质数"],
                    ["js 实现python 的 range(10)"],
                    ["js 实现python 的 [*(range(10)]"],
                    ["假定 1 + 2 = 4, 试求 7 + 8"],
                    ["Erkläre die Handlung von Cinderella in einem Satz."],
                    ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
                ],
                inputs=[user_input],
                examples_per_page=30,
            )
    
        with gr.Accordion("For Chat/Translation API", open=False, visible=False):
            input_text = gr.Text()
            tr_btn = gr.Button("Go", variant="primary")
            out_text = gr.Text()
        tr_btn.click(
            trans_api,
            [input_text, max_length, top_p, temperature],
            out_text,
            # show_progress="full",
            api_name="tr",
        )
        _ = """
        input_text.submit(
            trans_api,
            [input_text, max_length, top_p, temperature],
            out_text,
            show_progress="full",
            api_name="tr1",
        )
        # """

    with gr.Tab("📺 - SadTalker"):
        with gr.Row().style(equal_height=False):
            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="sadtalker_source_image"):
                    with gr.TabItem('Source image'):
                        with gr.Row():
                            source_image = gr.Image(label="Please upload an image here", source="upload", type="filepath", elem_id="img2img_image").style(width=512)
    
    
                with gr.Tabs(elem_id="sadtalker_driven_audio"):
                    with gr.TabItem('💡You can also download the generated video if you want'):
    
                        with gr.Row():
                            driven_audio = audio_cloned
                            driven_audio_no = gr.Audio(label="Use IDLE mode, no audio is required", source="upload", type="filepath", visible=False)
    
                            with gr.Column():
                                use_idle_mode = gr.Checkbox(label="Use Idle Animation", visible=False)
                                length_of_audio = gr.Number(value=5, label="The length(seconds) of the generated video.", visible=False)
                                use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no]) # todo
    
                        with gr.Row():
                            ref_video = gr.Video(label="Reference Video", source="upload", type="filepath", elem_id="vidref", visible=False).style(width=512)
    
                            with gr.Column():
                                use_ref_video = gr.Checkbox(label="Use Reference Video", visible=False)
                                ref_info = gr.Radio(['pose', 'blink','pose+blink', 'all'], value='pose', label='Reference Video',info="How to borrow from reference Video?((fully transfer, aka, video driving mode))", visible=False)
    
                            ref_video.change(ref_video_fn, inputs=ref_video, outputs=[use_ref_video]) # todo
    
    
            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="sadtalker_checkbox"):
                    with gr.TabItem('🔧 Settings'):
                        with gr.Column(variant='panel'):
                            # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
                            # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
                            with gr.Row():
                                pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0, visible=False) #
                                exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1, visible=False) #
                                blink_every = gr.Checkbox(label="use eye blink", value=True, visible=False)
    
                            with gr.Row():
                                size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False) #
                                preprocess_type = gr.Radio(['crop', 'full'], value='crop', label='How to handle the input image?', info="crop: resize the image; full: not resize")
    
                            with gr.Row():
                                is_still_mode = gr.Checkbox(label="Still mode (fewer head motion)", value=True)
                                facerender = gr.Radio(['facevid2vid','pirender'], value='facevid2vid', label='facerender', info="which face render?", visible=False)
    
                            with gr.Row():
                                batch_size = gr.Slider(label="Batch size in generation", step=1, maximum=32, value=2)
                                enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", value=True, visible=False)
    
                            submit = gr.Button('Start video chat now', elem_id="sadtalker_generate", variant='primary')
    
                with gr.Tabs(elem_id="sadtalker_genearted"):
                        gen_video = gr.Video(label="Generated video", format="mp4").style(width=256)
    
    
    
        submit.click(
                fn=sad_talker.test,
                inputs=[source_image,
                        driven_audio,
                        preprocess_type,
                        is_still_mode,
                        enhancer,
                        batch_size,
                        size_of_image,
                        pose_style,
                        facerender,
                        exp_weight,
                        use_ref_video,
                        ref_video,
                        ref_info,
                        use_idle_mode,
                        length_of_audio,
                        blink_every
                        ],
                outputs=[gen_video]
                )    
    gr.Markdown("### <center>❗ Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.</center>")
    gr.Markdown("<center>💡 - How to use this app:After sending your questions to ChatGLM2, click “Chat now”, “Generate using Edge-TTS”, “Generate using FreeVC” and “Start video chat now” in turn.</center>")

demo.queue().launch(show_error=True, debug=True)