File size: 6,077 Bytes
8a1292d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb57f70
97813ba
bb57f70
 
8a1292d
 
 
80e17e6
8a1292d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2b8b8
 
 
58a7186
bb57f70
5a2b8b8
 
 
8a1292d
 
 
 
 
5a2b8b8
 
 
d546fbc
5a2b8b8
 
8a1292d
 
 
 
 
 
 
 
5a2b8b8
d2565d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import sys, os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser


net_g = None


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio

def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    with torch.no_grad():
        audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
    return "Success", (hps.data.sampling_rate, audio)

image_markdown = ("""
<h1 align="center"><a href="http://www.talktalkai.com"><img src="https://media.9game.cn/gamebase/2021/7/23/227829877.jpg", alt="talktalkai" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
""")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_dir", default="./logs/OUTPUT_MODEL/G_13900.pth", help="path of your model")
    parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
    parser.add_argument("--share", default=False, help="make link public")
    parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config_dir)
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    '''
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    '''
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        gr.Markdown("# <center>🌊💕🎶 - Bert-VITS2 语音合成</center>")
        gr.Markdown("## <center>🌟 - 真实拟声、情感细腻:稻妻神里流太刀术皆传,神里绫华,参上! </center>")      
        gr.Markdown("### <center>🍻 - 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
        with gr.Accordion("绫华", open=True):
            gr.Markdown(image_markdown)
            


        with gr.Row():
            with gr.Column():
                text = gr.TextArea(label="Text", placeholder="Input Text Here",
                                      value="那是流萤吗,是明灭迷离,天真绮丽的憧憬。那是尘埃吧,是虚无纷飞,终将落地的谎言。")
                speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
                with gr.Row():
                    sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.1, label='语调变化')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.1, label='感情变化')
                with gr.Row():
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.8, step=0.1, label='音节发音长度变化')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.1, label='语速 (数值越小,语速越快)')
                btn = gr.Button("开启AI语音之旅吧!", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="Message")
                audio_output = gr.Audio(label="Output Audio")

        btn.click(tts_fn,
                inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
                outputs=[text_output, audio_output])

    app.launch(show_error=True)