File size: 5,281 Bytes
556657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob



ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]

METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]

LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')

LANG_NAME = {
    'ar': 'Arabic',
    'bn': 'Bengali',
    'ca': 'Catalan',
    'da': 'Danish',
    'de': 'German',
    'es': 'Spanish',
    'eu': 'Basque',
    'fr': 'French',
    'gu': 'Gujarati',
    'hi': 'Hindi',
    'hr': 'Croatian',
    'hu': 'Hungarian',
    'hy': 'Armenian',
    'id': 'Indonesian',
    'it': 'Italian',
    'kn': 'Kannada',
    'ml': 'Malayalam',
    'mr': 'Marathi',
    'ne': 'Nepali',
    'nl': 'Dutch',
    'pt': 'Portuguese',
    'ro': 'Romanian',
    'ru': 'Russian',
    'sk': 'Slovak',
    'sr': 'Serbian',
    'sv': 'Swedish',
    'ta': 'Tamil',
    'te': 'Telugu',
    'uk': 'Ukrainian',
    'vi': 'Vietnamese',
    'zh': 'Chinese'
}

MODEL_COL = "Model"
LANG_COL = "Language"
CODE_COL = "Code"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"

MGSM_COL = "MGSM"
MSVAMP_COL = "MSVAMP"
MNUM_COL = "MNumGLUESub"
HELLASWAG_COL = "HellaSwag (0-shot)️"
MMLU_COL = "MMLU (25-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes"  # For search only

COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"]



COLS = [MODEL_COL, MSVAMP_COL, MGSM_COL, MNUM_COL,NOTES_COL]
TYPES = ["str", "number", "number", "number","str"]



def get_leaderboard_df():
    df = list()
    results = [
        ["GPT-3.5-Turbo", 46.6, 42.2, 49.4],
        ["MAmmoTH", 26.3, 21.3, 24.2],
        ["WizardMath", 32.5, 23.0, 28.7],
        ["MetaMath", 46.2, 37.0, 43.2],
        ["QAlign", 57.2, 49.6, 0],
        ["MathOctopus", 41.2, 39.5, 37.1],
        ["MathOctopus-MAPO-DPO(ours)🔥", 57.4, 41.6, 50.4],
        ["MetaMathOctopus", 53.0, 45.5, 39.2],
        ["MetaMathOctopus-MAPO-DPO(ours) 👑", 64.7, 51.6, 52.9],
        ["MistralMathOctopus", 59.0, 58.0, 56.8],
        ["MistralMathOctopus-MAPO-DPO(ours) 👑", 74.6, 67.3, 70.0]
    ]
    # for (pretrained, lang), perfs in performance_dict.items():
    #     lang_name = LANG_NAME[lang]
    #     arc_perf = perfs.get(ARC, 0.0)
    #     hellaswag_perf = perfs.get(HELLASWAG, 0.0)
    #     mmlu_perf = perfs.get(MMLU, 0.0)
    #     truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0)

    #     if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0:
    #         continue
    #     avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1)
    #     notes = ' '.join([pretrained, lang_name])
    #     row = [pretrained, lang_name, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes]
    #     df.append(row)
    for i in results:
        i.append("NOTE")
    df = pd.DataFrame.from_records(results, columns=COLS)
    df = df.sort_values(by=[ MSVAMP_COL], ascending=False)
    df = df[COLS]

    return df


def search_table(df, query):
    filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
    return filtered_df



original_df = get_leaderboard_df()

demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
    #gr.Markdown(HOW_TO, elem_classes="markdown-text")

    with gr.Box():
        search_bar = gr.Textbox(
            placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
        )

        leaderboard_table = gr.components.Dataframe(
            value=original_df,
            headers=COLS,
            datatype=TYPES,
            max_rows=5,
            elem_id="leaderboard-table",
        )

        # # Dummy leaderboard for handling the case when the user uses backspace key
        hidden_leaderboard_table_for_search = gr.components.Dataframe(
            value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
        )

        search_bar.change(
            search_table,
            [hidden_leaderboard_table_for_search, search_bar],
            leaderboard_table,
        )

    with gr.Box():
        search_bar = gr.Textbox(
            placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
        )

        leaderboard_table = gr.components.Dataframe(
            value=original_df,
            headers=COLS,
            datatype=TYPES,
            max_rows=5,
            elem_id="leaderboard-table",
        )

        # # Dummy leaderboard for handling the case when the user uses backspace key
        hidden_leaderboard_table_for_search = gr.components.Dataframe(
            value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
        )

        search_bar.change(
            search_table,
            [hidden_leaderboard_table_for_search, search_bar],
            leaderboard_table,
        )

    #gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")

demo.launch()