File size: 3,335 Bytes
b0fe809
 
f9e16d6
b0fe809
f9e16d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fe809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b56fd3
 
b0fe809
 
6b56fd3
 
 
 
 
b0fe809
f9e16d6
 
3b899cf
f9e16d6
6b56fd3
f9e16d6
 
 
 
 
 
b0fe809
 
 
 
 
f9e16d6
b0fe809
f9e16d6
b0fe809
 
 
 
47e94f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import requests
import openai  # We will use OpenAI's API to generate the descriptions

# OpenAI API Key (You need to set your API key here)
openai.api_key = "your-openai-api-key-here"

# Function to generate AI-based description for each contributor
def generate_contributor_description(contributor_name, contributions):
    prompt = f"Generate an in-depth analysis of the contribution of {contributor_name} to a GitHub repository, with {contributions} commits. Focus on the impact, type of contributions, and significance of their work."
    
    response = openai.Completion.create(
        engine="text-davinci-003",  # Use the appropriate model for text generation
        prompt=prompt,
        max_tokens=150,
        temperature=0.7
    )
    
    return response.choices[0].text.strip()

# Function to fetch repository details from GitHub and generate descriptions for contributors
def analyze_github_repo(repo_url):
    # Extract the username and repo name from the GitHub URL
    if "github.com" not in repo_url:
        return "Please provide a valid GitHub repository URL."

    parts = repo_url.split('/')
    if len(parts) < 5:
        return "URL should be in the format: https://github.com/username/repository"

    user, repo = parts[3], parts[4]

    # GitHub API endpoint to get repository details
    api_url = f"https://api.github.com/repos/{user}/{repo}"
    response = requests.get(api_url)

    # Check if repository exists
    if response.status_code == 404:
        return "Repository not found."
    
    # Parse the response
    data = response.json()
    
    # Extract relevant information
    stars = data.get('stargazers_count', 'N/A')
    forks = data.get('forks_count', 'N/A')
    issues = data.get('open_issues_count', 'N/A')
    contributors_url = data.get('contributors_url', None)

    # Get number of contributors and their contributions (commit count)
    contributors = []
    if contributors_url:
        contributors_data = requests.get(contributors_url).json()
        for contributor in contributors_data:
            contributors.append({
                'login': contributor['login'],
                'contributions': contributor['contributions']
            })

    # Prepare the text for repository details
    result = f"Repository: {repo_url}\nStars: {stars}\nForks: {forks}\nOpen Issues: {issues}\n\nContributors' Contributions:\n"

    # Add AI-generated descriptions for each contributor
    for contributor in contributors:
        contributor_name = contributor['login']
        contributions = contributor['contributions']
        description = generate_contributor_description(contributor_name, contributions)
        result += f"{contributor_name} with {contributions} contributions: {description}\n"

    return result

# Gradio interface for the tool
iface = gr.Interface(
    fn=analyze_github_repo,
    inputs=gr.Textbox(label="Enter GitHub Repository URL", placeholder="https://github.com/username/repository"),
    outputs=gr.Textbox(label="Repository Analysis"),
    title="GitHub Repository Analysis Tool",
    description="Enter a GitHub repository URL to get an in-depth analysis of contributors' contributions using AI, including stars, forks, issues, and a detailed description of each contributor's work."
)

# Launch the app
iface.launch()