File size: 11,261 Bytes
b3bea79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr

import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from datasets import load_dataset
from PIL import Image  
import re

model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda"

pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to(device)
word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']

def infer(prompt, samples, steps, scale, seed):
    for filter in word_list:
        if re.search(rf"\b{filter}\b", prompt):
            raise Exception("Unsafe content found. Please try again with different prompts.")
        
    generator = torch.Generator(device=device).manual_seed(seed)
    with autocast("cuda"):
        images_list = pipe(
            [prompt] * samples,
            num_inference_steps=steps,
            guidance_scale=scale,
            generator=generator,
        )
    images = []
    safe_image = Image.open(r"unsafe.png")
    for i, image in enumerate(images_list["sample"]):
        if(images_list["nsfw_content_detected"][i]):
            images.append(safe_image)
        else:
            images.append(image)
    return images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 1070px;
            margin: auto;
            padding-top: 2rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 24px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 25px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'A high tech solarpunk utopia in the Amazon rainforest',
        3,
        40,
        7.5,
        1024,
    ],
    [
        'A pikachu fine dining with a view to the Eiffel Tower',
        3,
        40,
        7,
        1024,
    ],
    [
        'A mecha robot in a favela in expressionist style',
        3,
        40,
        7,
        1024,
    ],
    [
        'an insect robot preparing a delicious meal',
        3,
        40,
        7,
        1024,
    ],
    [
        "A small cabin on top of a snowy mountain in the style of disney, arstation",
        3,
        40,
        7,
        1024,
    ],
]

with block:
    gr.HTML(
        """
            <div style="text-align: center;">
                <div style="display: inline-flex; align-items: center; gap: .8rem; font-size: 1.75rem;">
                    <svg width="0.65em" height="0.65em" viewBox="0 0 115 115" fill="none" xmlns="http://www.w3.org/2000/svg">
                        <rect width="23" height="23" fill="white"/>
                        <rect y="69" width="23" height="23" fill="white"/>
                        <rect x="23" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="46" width="23" height="23" fill="white"/>
                        <rect x="46" y="69" width="23" height="23" fill="white"/>
                        <rect x="69" width="23" height="23" fill="black"/>
                        <rect x="69" y="69" width="23" height="23" fill="black"/>
                        <rect x="92" width="23" height="23" fill="#D9D9D9"/>
                        <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="115" y="46" width="23" height="23" fill="white"/>
                        <rect x="115" y="115" width="23" height="23" fill="white"/>
                        <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"/>
                        <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="92" y="69" width="23" height="23" fill="white"/>
                        <rect x="69" y="46" width="23" height="23" fill="white"/>
                        <rect x="69" y="115" width="23" height="23" fill="white"/>
                        <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"/>
                        <rect x="46" y="46" width="23" height="23" fill="black"/>
                        <rect x="46" y="115" width="23" height="23" fill="black"/>
                        <rect x="46" y="69" width="23" height="23" fill="black"/>
                        <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"/>
                        <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"/>
                        <rect x="23" y="69" width="23" height="23" fill="black"/>
                    </svg>
                    <h1 style="font-weight: 900;">Stable Diffusion Spaces</h1>
                </div>
                <p style="margin-bottom: 20px;">Stable Diffusion is a state of the art text-to-image model that generates images from a text description.</p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[3], height="auto")

        advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")

        with gr.Row(elem_id="advanced-options"):
            samples = gr.Slider(label="Images", minimum=1, maximum=3, value=3, step=1)
            steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=40, step=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )
            seed = gr.Slider(
                label="Random seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=gallery, cache_examples=True)
        ex.dataset.headers = [""]

        
        text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
        btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
        advanced_button.click(
            None,
            [],
            text,
            _js="""
            () => {
                const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
                options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
            }""",
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Demo by 🤗 Hugging Face
                    </p>
                </div>
                <div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with an <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The license states that the outputs that you make fully belong to you, and you are liable when sharing it. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
               </div>
           """
        )

block.queue(max_size=40).launch()