File size: 8,907 Bytes
307beef
 
 
 
 
 
10f3130
307beef
 
 
 
 
 
 
 
 
 
 
 
10f3130
307beef
 
 
 
 
 
 
 
10f3130
307beef
 
651391d
10f3130
 
 
 
 
651391d
10f3130
 
 
651391d
307beef
 
10f3130
307beef
10f3130
 
 
307beef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651391d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307beef
 
 
 
 
 
 
 
 
 
651391d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307beef
 
 
 
 
 
 
 
 
 
 
 
651391d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307beef
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
from pathlib import Path
import gradio as gr
from datasets import load_dataset
from ultralyticsplus import YOLO, render_result, postprocess_classify_output

from utils import load_models_from_txt_files, get_dataset_id_from_model_id, get_task_from_readme

EXAMPLE_IMAGE_DIR = 'example_images'

DEFAULT_DET_MODEL_ID = 'keremberke/yolov8m-valorant-detection'
DEFAULT_DET_DATASET_ID = 'keremberke/valorant-object-detection'
DEFAULT_SEG_MODEL_ID = 'keremberke/yolov8s-building-segmentation'
DEFAULT_SEG_DATASET_ID = 'keremberke/satellite-building-segmentation'
DEFAULT_CLS_MODEL_ID = 'keremberke/yolov8m-chest-xray-classification'
DEFAULT_CLS_DATASET_ID = 'keremberke/chest-xray-classification'

# load model ids and default models
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
task_to_model_ids = {'detect': det_model_ids, 'segment': seg_model_ids, 'classify': cls_model_ids}
det_model = YOLO(DEFAULT_DET_MODEL_ID)
det_model_id = DEFAULT_DET_MODEL_ID
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
seg_model_id = DEFAULT_SEG_MODEL_ID
cls_model = YOLO(DEFAULT_CLS_MODEL_ID)
cls_model_id = DEFAULT_CLS_MODEL_ID


def get_examples(task):
    examples = []
    Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
    image_ind = 0
    for model_id in task_to_model_ids[task]:
        dataset_id = get_dataset_id_from_model_id(model_id)
        ds = load_dataset(dataset_id, name="mini")["validation"]
        for ind in range(min(2, len(ds))):
            jpeg_image_file = ds[ind]["image"]
            image_file_path = str(Path(EXAMPLE_IMAGE_DIR) / f"{task}_example_{image_ind}.jpg")
            jpeg_image_file.save(image_file_path, format='JPEG', quality=100)
            image_path = os.path.abspath(image_file_path)
            examples.append([image_path, model_id, 0.25])
            image_ind += 1
    return examples


# load default examples using default datasets
det_examples = get_examples('detect')
seg_examples = get_examples('segment')
cls_examples = get_examples('classify')


def predict(image, model_id, threshold):
    """Perform inference on image."""
    # set task
    if model_id in det_model_ids:
        task = 'detect'
    elif model_id in seg_model_ids:
        task = 'segment'
    elif model_id in cls_model_ids:
        task = 'classify'
    else:
        raise ValueError(f"Invalid model_id: {model_id}")

    # set model
    if task == 'detect':
        global det_model
        global det_model_id
        if model_id != det_model_id:
            det_model = YOLO(model_id)
            det_model_id = model_id
        model = det_model
    elif task == 'segment':
        global seg_model
        global seg_model_id
        if model_id != seg_model_id:
            seg_model = YOLO(model_id)
            seg_model_id = model_id
        model = seg_model
    elif task == 'classify':
        global cls_model
        global cls_model_id
        if model_id != cls_model_id:
            cls_model = YOLO(model_id)
            cls_model_id = model_id
        model = cls_model
    else:
        raise ValueError(f"Invalid task: {task}")

    # set model parameters
    model.overrides['conf'] = threshold

    # perform inference
    results = model.predict(image)
    print(model_id)
    print(task)

    if task in ['detect', 'segment']:
        # draw predictions
        output = render_result(model=model, image=image, result=results[0])
    elif task == 'classify':
        # postprocess classification output
        output = postprocess_classify_output(model, result=results[0])
    else:
        raise ValueError(f"Invalid task: {task}")

    return output


with gr.Blocks() as demo:
    gr.Markdown("""# <p align='center'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></p>
    <p style='text-align: center'>
        <br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a> 
    </p>
    <p style='text-align: center'>
        Follow me for more! 
        <br> <a href='https://twitter.com/_keremberke' target='_blank'>twitter</a> | <a href='https://github.com/keremberke' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/kerem-berke-bba6a5204/' target='_blank'>linkedin</a> 
    </p>
    """)
    with gr.Tab("Detection"):
        with gr.Row():
            with gr.Column():
                detect_input = gr.Image()
                detect_model_id = gr.Dropdown(choices=det_model_ids, label="Model:", value=DEFAULT_DET_MODEL_ID, interactive=True)
                detect_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
                detect_button = gr.Button("Detect!")
            with gr.Column():
                detect_output = gr.Image(label="Predictions:", interactive=False)
        with gr.Row():
            half_ind = int(len(det_examples) / 2)
            with gr.Column():
                detect_examples = gr.Examples(
                        det_examples[:half_ind],
                        inputs=[detect_input, detect_model_id, detect_threshold],
                        outputs=detect_output,
                        fn=predict,
                        cache_examples=False,
                    )
            with gr.Column():
                detect_examples = gr.Examples(
                        det_examples[:half_ind],
                        inputs=[detect_input, detect_model_id, detect_threshold],
                        outputs=detect_output,
                        fn=predict,
                        cache_examples=False,
                    )
    with gr.Tab("Segmentation"):
        with gr.Row():
            with gr.Column():
                segment_input = gr.Image()
                segment_model_id = gr.Dropdown(choices=seg_model_ids, label="Model:", value=DEFAULT_SEG_MODEL_ID, interactive=True)
                segment_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
                segment_button = gr.Button("Segment!")
            with gr.Column():
                segment_output = gr.Image(label="Predictions:", interactive=False)
        with gr.Row():
            half_ind = int(len(det_examples) / 2)
            with gr.Column():
                segment_examples = gr.Examples(
                        seg_examples[:half_ind],
                        inputs=[segment_input, segment_model_id, segment_threshold],
                        outputs=segment_output,
                        fn=predict,
                        cache_examples=False,
                    )
            with gr.Column():
                segment_examples = gr.Examples(
                        seg_examples[:half_ind],
                        inputs=[segment_input, segment_model_id, segment_threshold],
                        outputs=segment_output,
                        fn=predict,
                        cache_examples=False,
                    )
    with gr.Tab("Classification"):
        with gr.Row():
            with gr.Column():
                classify_input = gr.Image()
                classify_model_id = gr.Dropdown(choices=cls_model_ids, label="Model:", value=DEFAULT_CLS_MODEL_ID, interactive=True)
                classify_threshold = gr.Slider(maximum=1, step=0.01, value=0.25, label="Threshold:", interactive=True)
                classify_button = gr.Button("Classify!")
            with gr.Column():
                classify_output = gr.Label(
                    label="Predictions:", show_label=True, num_top_classes=5
                )
        with gr.Row():
            half_ind = int(len(det_examples) / 2)
            with gr.Column():
                classify_examples = gr.Examples(
                        cls_examples[half_ind:],
                        inputs=[classify_input, classify_model_id, classify_threshold],
                        outputs=classify_output,
                        fn=predict,
                        cache_examples=False,
                    )
            with gr.Column():
                classify_examples = gr.Examples(
                        cls_examples[:half_ind],
                        inputs=[classify_input, classify_model_id, classify_threshold],
                        outputs=classify_output,
                        fn=predict,
                        cache_examples=False,
                    )

    detect_button.click(
        predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output
    )
    segment_button.click(
        predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output
    )
    classify_button.click(
        predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output
    )

demo.launch(server_port=8080)