File size: 5,250 Bytes
21f578d
 
 
 
c9dcf86
5af1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70f662
 
 
 
 
cb820b7
 
5af1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91aba77
9a1fe42
5af1bb1
 
 
bd72b5f
9a1fe42
b40f84b
91aba77
b40f84b
5af1bb1
cb820b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
os.system('pip install tensorflow')
os.system('pip install tensorflow_hub')
os.system('pip install tensorflow_text')

from huggingface_hub import from_pretrained_keras
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
from tensorflow import keras
import gradio as gr


def make_bert_preprocessing_model(sentence_features, seq_length=128):
    """Returns Model mapping string features to BERT inputs.



      Args:

        sentence_features: A list with the names of string-valued features.

        seq_length: An integer that defines the sequence length of BERT inputs.



      Returns:

        A Keras Model that can be called on a list or dict of string Tensors

        (with the order or names, resp., given by sentence_features) and

        returns a dict of tensors for input to BERT.

    """
    
    input_segments = [
        tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)
        for ft in sentence_features
    ]
    
    # tokenize the text to word pieces
    bert_preprocess = hub.load(bert_preprocess_path)
    tokenizer = hub.KerasLayer(bert_preprocess.tokenize,
                              name="tokenizer")
    
    segments = [tokenizer(s) for s in input_segments]
    
    truncated_segments = segments
    
    packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs,
                           arguments=dict(seq_length=seq_length),
                           name="packer")
    model_inputs = packer(truncated_segments)
    return keras.Model(input_segments, model_inputs)


def preprocess_image(image_path, resize):
    extension = tf.strings.split(image_path)[-1]
    
    image = tf.io.read_file(image_path)
    if extension == b"jpg":
        image = tf.image.decode_jpeg(image, 3)
    else:
        image = tf.image.decode_png(image, 3)
        
    image = tf.image.resize(image, resize)
    return image

def preprocess_text(text_1, text_2):
    
    text_1 = tf.convert_to_tensor([text_1])
    text_2 = tf.convert_to_tensor([text_2])
    
    output = bert_preprocess_model([text_1, text_2])
    
    output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features}
    
    return output

def preprocess_text_and_image(sample, resize):
    
    image_1 = preprocess_image(sample['image_1_path'], resize)
    image_2 = preprocess_image(sample['image_2_path'], resize)
    
    text = preprocess_text(sample['text_1'], sample['text_2'])
    
    return {"image_1": image_1, "image_2": image_2, "text": text}


def classify_info(image_1, text_1, image_2, text_2):

    sample = dict()
    sample['image_1_path'] = image_1
    sample['image_2_path'] = image_2
    sample['text_1'] = text_1
    sample['text_2'] = text_2

    dataframe = pd.DataFrame(sample, index=[0])

    ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0]))
    ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache()
    batch_size = 1
    auto = tf.data.AUTOTUNE
    ds = ds.batch(batch_size).prefetch(auto)
    output = model.predict(ds)

    outputs = dict()
    
    outputs[labels[0]] = float(output[0][0])
    outputs[labels[1]] = float(output[0][1])
    outputs[labels[2]] = float(output[0][2])
    #label = np.argmax(output)
    return outputs #labels[label]


model = from_pretrained_keras("keras-io/multimodal-entailment")
resize = (128, 128)
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"]
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1")
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2'])

labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"}

resize = (128, 128)
image_1 = gr.inputs.Image(type="filepath")
image_2 = gr.inputs.Image(type="filepath")

text_1 = gr.inputs.Textbox(lines=5)
text_2 = gr.inputs.Textbox(lines=5)

examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']]

label = gr.outputs.Label()

iface = gr.Interface(classify_info, 
	inputs=[image_1, text_1, image_2, text_2], outputs=label,
	examples = examples,
	title="Multimodal Entailment Keras",
	description = "Model for classifying whether image and text from one scenario complements the image and text from another scenario. They can be contradictory, implied or no entailment. Example images and text from the dataset in raw form !",
        article = "Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")

iface.launch()