Spaces:
Build error
Build error
File size: 5,152 Bytes
21f578d c9dcf86 5af1bb1 da12076 cb820b7 5af1bb1 91aba77 9a1fe42 5af1bb1 bd72b5f 9a1fe42 b40f84b 91aba77 b40f84b 5af1bb1 cb820b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
os.system('pip install tensorflow')
os.system('pip install tensorflow_hub')
os.system('pip install tensorflow_text')
from huggingface_hub import from_pretrained_keras
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
from tensorflow import keras
import gradio as gr
def make_bert_preprocessing_model(sentence_features, seq_length=128):
"""Returns Model mapping string features to BERT inputs.
Args:
sentence_features: A list with the names of string-valued features.
seq_length: An integer that defines the sequence length of BERT inputs.
Returns:
A Keras Model that can be called on a list or dict of string Tensors
(with the order or names, resp., given by sentence_features) and
returns a dict of tensors for input to BERT.
"""
input_segments = [
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)
for ft in sentence_features
]
# tokenize the text to word pieces
bert_preprocess = hub.load(bert_preprocess_path)
tokenizer = hub.KerasLayer(bert_preprocess.tokenize,
name="tokenizer")
segments = [tokenizer(s) for s in input_segments]
truncated_segments = segments
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs,
arguments=dict(seq_length=seq_length),
name="packer")
model_inputs = packer(truncated_segments)
return keras.Model(input_segments, model_inputs)
def preprocess_image(image_path, resize):
extension = tf.strings.split(image_path)[-1]
image = tf.io.read_file(image_path)
if extension == b"jpg":
image = tf.image.decode_jpeg(image, 3)
else:
image = tf.image.decode_png(image, 3)
image = tf.image.resize(image, resize)
return image
def preprocess_text(text_1, text_2):
text_1 = tf.convert_to_tensor([text_1])
text_2 = tf.convert_to_tensor([text_2])
output = bert_preprocess_model([text_1, text_2])
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features}
return output
def preprocess_text_and_image(sample, resize):
image_1 = preprocess_image(sample['image_1_path'], resize)
image_2 = preprocess_image(sample['image_2_path'], resize)
text = preprocess_text(sample['text_1'], sample['text_2'])
return {"image_1": image_1, "image_2": image_2, "text": text}
def classify_info(image_1, text_1, image_2, text_2):
sample = dict()
sample['image_1_path'] = image_1
sample['image_2_path'] = image_2
sample['text_1'] = text_1
sample['text_2'] = text_2
dataframe = pd.DataFrame(sample, index=[0])
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0]))
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache()
batch_size = 1
auto = tf.data.AUTOTUNE
ds = ds.batch(batch_size).prefetch(auto)
output = model.predict(ds)
outputs = {(labels[i], output[i]) for i in range(len(output))}
#label = np.argmax(output)
return outputs #labels[label]
model = from_pretrained_keras("keras-io/multimodal-entailment")
resize = (128, 128)
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"]
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1")
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2'])
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"}
resize = (128, 128)
image_1 = gr.inputs.Image(type="filepath")
image_2 = gr.inputs.Image(type="filepath")
text_1 = gr.inputs.Textbox(lines=5)
text_2 = gr.inputs.Textbox(lines=5)
examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']]
label = gr.outputs.Label()
iface = gr.Interface(classify_info,
inputs=[image_1, text_1, image_2, text_2], outputs=label,
examples = examples,
title="Multimodal Entailment Keras",
description = "Model for classifying whether image and text from one scenario complements the image and text from another scenario. They can be contradictory, implied or no entailment. Example images and text from the dataset in raw form !",
article = "Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")
iface.launch() |